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A NEW METHODOLOGY FOR FREE WAKE ANALYSIS

USING CURVED VORTEX ELEMENTS

Donald B. Bliss and Milton E. Teske

Continuum Dynamics, Inc., Princeton, New Jersey 08540

Todd R. Quackenbush

Princeton University, Princeton, New Jersey 08540

SUMMARY

This report describes research to evaluate the feasibility of using curved

vortex elements to do rotor free wake calculations. The Basic Curved Vortex

Element (BCVE) was developed for this purpose. The element is based on the

approximate Biot-Savart integration for a parabolic arc filament shape.

Special care was taken to insure the accuracy of the method at points close to

the arc. A scheme called the interpolated point method was also developed to

determine the curvature and orientation of these elements when placed between

collocation points along the wake contour.

The computer time and accuracy of the BCVE were studied extensively in

relation to the performance of the simpler straight-llne elements which have

traditionally been used. In numerical simulations, curved elements were found

to be far more accurate in predicting vortex filament flow fields, even when

much larger elements were used. Although the curved element is more complex

analytically, the fact that the elements can be larger leads to a net

reduction in computer time while maintaining a strong accuracy advantage.

As part of the accuracy study, the errors made by straight-line elements

were evaluated. These errors were found to be related to deviations in

position relative to the filament contour and to a failure to simulate the

local curvature of the arc. Based on a local analysis, universal formulas

were developed for predicting stralght-line element errors. Within one

element length of a vortex filament, straight-llne elements induce velocity

errors of the same order as the self-induced velocity due to local curvature,

an effect included in free wake analyses. This raises a question of

consistency in the stralght-line element technique.
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The curved element method was implemented into a forward flight free wake

analysis using a time stepping approach. A new far wake model was also
developed which utilizes free wake information to prescribe and update the far

wake shape downstream of the free wake region. Sample calculations were

performed for different element sizes and advance ratios for single and multi-

blade rotors. The highly distorted free wake shapes showeda numberof common

features, the most distinctive being a strong tendency toward rapid roll-up of

the sides of the wake immediately downstream of the rotor. A preliminary
assessment was made of the effect of element size on the downwashfield at a

rotor blade, with there being only small differences between elements

generated by 15°, 30° and 45° increments of blade rotation. In general, the

curved element approach exhibited rapid convergence.

As a final demonstration of capability, the free wake routine was

implemented into the Boeing Vertol B-65 rotor aerodynamics program.

Previously, this code used a prescribed wake analysis for the tip vortex.

Sample calculations were performed for a four-bladed rotor with a prescribed

wake and with free wakes using different element sizes.
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coefficient of x I in quadratic expression, Eq. (12)

nondimensional kinetic energy of vortex core swirl velocity

longitudinal flapping coefficients

distance from blade tip to point of maximum spanwise load
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coefficient of x I in quadratic expression, Eq. (12)

number of rotor blades

lateral flapping coefficients

integration contour along vortex filament

coefficient of x_ in quadratic expression, Eq. (12)

nondimensional kinetic energy of vortex core axial velocity

cut-off distance for self-induced velocity

subinterval integration limit, Eqs. (16) and (20)

radial unit vector for local polar coordinates on a
filament

tangential unit vector for local polar coordinates on a
filament

approximating functions in piecewise quadratic model,
Eqs. (17) and (18)

piecewise continuous function in quadratic model, Eq. (19)

summation index

unit vector in element Cartesian coordinate system, tangent
to filament

integrals arising in curved element model, Eq. (12) and
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number of velocity calculation points not in the free wake

quadratic function for piecewise approximation of quartic

term, Eq. (8)

subinterval representations of M(X,Xl)

summation index for far field element array

number of vortex elements per blade
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number of time steps for free wake convergence

number of straight-line vortex elements per blade

number of subinterval calculations per blade for points in

the wake

velocity vector

velocity from nearby element corrected for core velocity

distribution
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I. INTRODUCTION

A critical issue in the field of rotor aerodynamics is the treatment of

the wake. The wake is of primary importance in determining overall

aerodynamic behavior and in predicting structural vibration and aerodynamic
noise. The two most commonapproaches to rotor wake modelling can be broadly

categorized as prescribed wake and free wake analyses.

In prescribed wake models, the wake position is determined according to

some relatively simple criterion. For example, the wake location can be

kinematically determined from the rotor motion and the downwashfield derived
from momentumtheory. The Biot-Savart law can then be used to find the

downwashinduced by this wake at the rotor plane. In someschemes, the wake

location may be adjusted by empirical factors or slightly updated as the

calculation progresses. However, the determination of a prescribed wake shape

always involves a process which does not consider in detail the various

effects acting on the wake, and in particular the effect of the wake on

itself. Thus, a prescribed wake configuration is not a valid free vortex

flow. Prescribed wake methods are nevertheless valuable since they provide

accurate results for some applications, and have the advantage of relative

simplicity and low user cost.

Free wake models have been developed in an attempt to simulate in detail

the actual shape and motion of the wake (Refs 1 through 15). The primary

emphasis has been on locating the strong tip vortex, although methods have

also been developed to model the inboard shed vorticity. Typically, the tip

vortex has been approximated by a series of connected stralght-line

segments. The velocity induced at each connection point is calculated by

integrating the Biot-Savart law over the rest of the wake and over the bound

vorticity on the rotor. A cut-off distance approach is used to avoid singular

behavior when evaluating the velocity induced on the vortex itself. The
connection points are assumedto be convected at the local velocity over a

small time increment. The wake location is then updated and new convection

velocities are calculated. This procedure is continued until the solution
i



converges to a final wake configuration which is repeatable from cycle to
cycle within somespecified accuracy.

The currently available free-wake models have been somewhat more

successful than prescribed wake models in the low speed flight regime. In

particular, computedwake shapes show a fair degree of qualitative agreement

with the primary features seen in flow visualization experiments, namely, wake

contraction in very close proximity to the rotor plane, and a tendency in

forward flight for the overlapping vortex filaments to "roll-up" along the

sides of the wake downstream of the rotor. However, to obtain good

quantitative agreement between predicted aerodynamic loads and experimental

results often requires the Judicious adjustment of calculation parameters.

Furthermore, the considerable complexity and high operating cost of current
free wake codes must also be viewed as a problem.

The purpose of this report is to describe a new method for free wake

modelling. This method is intended to improve accuracy and to reduce

computing time and cost. The central feature of this approach is the

development of a new free wake element. The "Basic Curved Vortex Element"

(BCVE) is a curved arc, typically of greater length than the straight-line

segments used previously. The curved element has a constant circulation plus

a linear variation to account for changes in tip vortex strength due to the

azimuthal load variations experienced by the rotor blades. An approximate

analytical solution can be obtained for such a curved vortex element, and this

fact is largely responsible for making the curved element approach

practical. The derivation of the curved vortex element is described in the

next section. This element is to be used throughout the wake in place of

straight-line elements.

Of particular importance to the success of the method is the development

of a means to pass the arcs between the connection points along the wake.

Since fewer elements are to be used, the choice of an optimum method for

finding the properties of each arc is critically important. The problem is

essentially one of determining an appropriate spline fit procedure for the

vortex wake curve and ensuring that this procedure is compatible with the

2



efficient use of curved vortex elements. Several element connection schemes

are described, and their advantages and disadvantages are discussed. The best

of these, called the interpolated point method, is then used in subsequent
calculations.

Because of its greater arc length and curved shape, which is naturally

compatible with the wake shape, the wake can be modelled accurately with many

fewer BCVE's than the straight-line segments normally used. Reducing the

number of elements reduces the number of wake position points that must be

updated in each solution iteration, which reduces the required computing

time. Since the computer time to converge a free wake calculation depends

strongly on the number of elements, there is a strong incentive to reduce the

number of elements. However, the element model itself is more complicated and

this partially offsets the savings in computer time. The computer time and

accuracy of curved elements relative to straight-line elements have been

studied thoroughly in Section 3. It is found that by using curved elements

computer time can be reduced while avoiding significant errors associated with

straight-line elements. An interesting result is that using straight-line

elements incurs an error in the velocity field near a filament on the same

order as the self-lnduction effect normally included.

The new curved element method has been incorporated into a forward flight

free wake analysis. This analysis has been used on its own for demonstration

purposes, and has also been implemented into an existing aerodynamic loads

code developed by Boeing Vertol Company, replacing a prescribed wake

routine. This forward flight free wake work is the subject of Sections 4 and

5 of this report. The curved element has also been used in a free wake hover

analysis, described in Reference 13, and in a new approach to the hover

problem, described in Reference 15.



2. CURVEDVORTEXELEMENTS

2.1 Vortex Element Models

Two types of vortex elements are required to implement a free wake

analysis. The first type of element is used to evaluate the velocity induced

at any point in the flow field not on the element itself. Traditionally,
straight-line elments have been used for this purpose. The present work

develops an alternate approach using a more sophisticated curved element.
This curved element will be referred to as the Basic Curved Vortex Element, or

BCVE. The second type of element is used only to evaluate the velocity

induced by the element on itself. This element will be called the Self-
Induction Vortex Element, or SIVE. The SIVEhas been used previously by other

researchers, 6,11-16 and will be described only briefly. The BCVEis new and
will be described first and in more detail.

2.1.1 The Basic Curved Vortex Element (BCVE)

The derivation of the BCVEis based on the fact that the Biot-Savart

integration can be done approximately, but accurately, for a parabolic arc. A

parabolic arc is an excellent approximation to a circular arc passed between
the samemidpoint and end points up to fairly large arc angles, as the sketch

in Figure I indicates. In the coordinates shown, the parabola is given by:

2
y = m (I)

where

%
cos _--- - 1

e - (2)

R sln 2 !
o 2
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Figure I. Comparison of parabolic arc and circular arc geometry.



For convenience, the parameter c is defined in terms of the properties of

the corresponding circular arc; note that _ < O •

For the largest acceptable arcs, say 60 ° to 90 °, there are discernible

differences in the shape of circular and parabolic arcs. The differences in

local slope and in curvature are most important near the end points. As will

be shown later, even for large arcs the difference between a circular arc

velocity field and a parabolic arc velocity field is only noticeable very near

the arc, typically at distances much less than an arc length. However, the

important point here is that introducing a curved element is the significant

refinement over previous work. Whether the arcs which approximate the actual

wake curve locally are parabolic or circular should not matter. In fact, in

any calculation where this difference is important, the arc lengths are too

large.

•

The geometry for performing the Biot-Savart integration is shown in Figure

The Biot-Savart law for the velocity vector q has the general form:

r

q=- 3
r

v
c

(3)

The circulation 2 may vary along the arc provided that vorticity

conservation is satisfied by some other part of the wake model, e.g., by using

a model for an adjacent spanwlse vortex sheet• This issue will not be

considered further at present, other than to allow for a linear variation in

r when evaluating Eq. (3). From Figure 2 the incremental arc length vector

is given by

ds = (_ + 2_Xl_)dx I (4)

and the vector distance from the arc to the point of evaluation is

6
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Figure 2. Geometry for the Biot-Savart integration over a parabolic arc.



2
÷rv - (x - x1) + <y - + (s)

The cross-product of these quantities is found to be

_vXd_ ffi-2¢ZXldXl_ + ZdXl_ + (2eXlX - ex_ - y)dXl_ (6)

Calculating the cube of the magnitude of Eq. (5), and grouping terms in

powers of xI yields

3 2
rv ffi{(i - 2ey)x I + (-2x)x I + (x 2 + y2 + z2) + e2x_}

3/2

(7)

24

The presence of the term e x I in the above provides the principal difficulty

in evaluating Eq. (3) in a relatively simple analytical form. Although this

term appears to be small, it is actually quite important when the point of

evaluation is near the vortex filament, particularly when the arc angle is

large. To obtain accurate results near the vortex it is necessary to model

this term. The most elaborate model that allows for simple evaluation of Eq.

(3) is a quadratic in x I . The term to be modeled turns out to be most

important when xI = x , and thus the model, denoted by M(X,Xl) , must adapt

to the value of x , namely

2 4 E2 2
e xI - M(x,x I) ffi [F2(x)x I + FI(X)X I + Fo(X) ] (8)

4

A single quadratic in xI cannot fit the function x I over the entire

interval -£ < xI _ £ with sufficient accuracy for all choices of Xl, at

least if very good accuracy is desired for points in the velocity field very

near a large arc. The problem is that very high accuracy is needed when

xI = x , while still maintaining reasonable accuracy elsewhere. This

8



difficulty can be overcome by dividing the interval of integration into three
sub-intervals and using a different form of Eq. (8) in each sub-interval.

Fortunately, this can be done in a fairly simple and efficient manner, as
described later.

For the moment, substitute Eq. (8) into Eq. (7) to obtain

3
r
v

2 2 E2FI= {(I - 2Ey + E F2)x I + (-2x + )x I

+ (x2 + y2 + z2 + _2Fo )}

312
(9)

The possibility of a variation in circulation along the arc length will be

modelled by including a linear dependence on xI , namely

P(Xl) = Po + rlXl (i0)

Then the numerator of Eq. (13) is given by

+ + _ ÷ ÷r(xl)rvXdS = (-2erozx I - 2erlZX )dXl i +(r z + rlzxIo )dXlJ

+ (-yr ° + [2_roX- yr l]x I (11)

3 ÷

Since Eq. (II) involves only integer powers of xI , and since Eq. (9)

contains only a quadratic in x I , all integrals required to evaluate Eq. (3)

have the form

n

]3/2
In = dx 1

[cx21 + bx I + a

(12)

9



Here a , b , and c are the coefficients of the quadratic in x I in Eq.

(9). The integrals In are available in integral tables for the first few

values of n , and for larger n they can be found using integration by

parts. Appendix A gives the value of this integral for the values

n = 0,1,2,3 which are of interest to the present work, and mentions other

considerations for accurate numerical evaluation.

Defining the velocity components as q = ul + v_ + wE , the evaluation of

Eq. (3) yields the following results:

U R --

_r z
o

27 I I
arc

+
_rlz

27 12
arc

(13)

F°z I rlZv = 47 Io - 4TII
arc arc

(14)

W _

Yro

47 I °
arc

[2 Er x ]o - YFI

47[ II
arc

(15)

[2erlx- ero]

47 12
arc

+

arc

Here the notation In l has been used to indicate integration over the
i arc

arc. This integration is done in two different ways depending on the distance

from the point of evaluation to the closest point on the arc. If this
24

distance exceeds approximately 1.5£ , the quadratic model of e x I can be

neglected (Fo = F 1 = F2 = O) with an error of less than 1%. The integral is

then evaluated at the arc end points, namely In = In

simplification reduces the computer time to evalu c a v _x element

contribution by about a factor of 2. In an actual free wake calculation, the

majority of integral evaluations are of this simpler type. If the distance

I0



from the arc is less than approximately 1.5£ , the integral evaluation is

done as described below. In practice, the distance from the arc is estimated

by testing to see if 'the distance from the midpoint or either end point

exceeds 1.5£ .

At points close to the arc the piecewise quadratic model of the term

e2x 4 is used. The integration over the arc actually is done in three sub-

intervals, with different values of a, b, and c in Eq. (12). This is due

to the different values of Fo , FI and F2 in the quadratic model for each

sub-interval. The interval of integration is subdivided as follows:

I1n
arc

-d(x)
= In(M_) + In(M o)

-%
d(x) [£

+ In(M +)

-d(x) d(x)

(16)

Here £ = Ro sin (80/2) is half the distance between the ends of the arc

shown in Figures I and 2. The sub-lnterval end points at _d(x) adapt to the

value of x . The notation M_ , M o , M+ denotes the choices of the model

for _x 4 given by Eq. (8) in each sub-lnterval. This sub-interval modelling

procedure is now explained in more detail.

2 4
It is necessary to have M(X,Xl) model the term e xI very accurately

when x I = x and -£ _ x _ £ , since at this point the rest of the terms in

Eq. (7) are near a minimum. The model should give the correct value at

x I = x and match, or at least nearly match, the local slope. At points away

from xI = x , it is not the absolute accuracy of M(X,Xl) that is important,

error relative to the quantity (x - Xl)2 , whichbut rather the size of the

is the largest term in Eq. (7) (if regrouped). The choice of a model which

will provide sufficient accuracy is not unique, and the approach given below

was chosen for its relative simplicity as well as its accuracy. Based on Eq.

(7), define

2
M±(X,Xl) = Fo(X ) ; FI(X)X I + F2(x)x I (17)

Ii



where good results are obtained using

F (x) = h(x) 4 + £2h(x)2
o

(18a)

Fl(X ) = 4h(x) 3 + 2£2h(x) (18b)

F2(x ) = 4h(x)2 + £2 (18c)

with

h(x) _- x l ct£ < x

x ) £

< _ (19)

Here M±(X,Xl) is used in the sub-interval integrations denoted by Eq. (16),

along with the end point location

d(x) - c_ + 8[h(x) - e£] (20)

Good choices of the constants are a - 0.3 and 8 = 0.4 , so that

0.3£ ( d _ 0.58£. Finally, for the middle interval in Eq. (16)

Mo(X,X I) _ 0 (21)

The effect of Eqs. (17) through (21) is now explained. Figure 3 shows the

24
plecewlse parabolic model of e x I for three cases. The model always fits

well around x I _ x and the errors near the discontinuities at xI = _=d

largely cancel when the integration is actually performed. When x _ d

or x ) £ , the parabolas are frozen in the positions shown for x- 0.3 and
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x = 1.0, respectively. The model is always symmetric, so for negative x a

mirror image of Figure 3 would be obtained. Implementing this approach allows

the Biot-Savart law to be evaluated to good accuracy for a parabolic arc. A

detailed study of the accuracy of the BCVE is found in Section 3.

2.1.2 The Self-Induction Vortex Element (SIVE)

The geometry for the derivation of the Self-Induction Vortex Element,

SIVE, is shown in Figure 4. A circular arc is passed through the three col-

location points j-1 , j and j+1 for the purpose of evaluating the self-

induced velocity at the center point j . The Biot-Savart integral must be

stopped at a cut-off distance d c on either side of j to avoid a

logarithmic singularity in the velocity field. Previous work has shown how

the cut-off distance should be chosen to give the correct answer. 17-19 Using

the properly chosen cut-off distance is equivalent to having used the method

of matched asymptotic expansions to match an inner solution for a curved

rotational vortex core to an outer solution generated by the Biot-Savart

integration over the vortex filament.

The cut-off distance expressed in terms of the vortex core radius, a , is

given by

ac 1
d =-- e-(A - C - _) (22)
c 2

where the constants A and C

vortex core associated with the

respectively. In general

w

r

A = £im_ If r v2dro - inr]
r+_

o

14

are related to the kinetic energy in the

swirl and axial velocity components,

(23)



Figure 4. Geometry for the Biot-Savart integration to determine the
self-induced velocity for the SIVE.
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where _ = r/a c , and Vo (_) is the swirl velocity distribution in the

vortex core nondimensionalized by F/2_a c . Similarly, if Wo(_) is the

axial velocity distribution nondimensionalized by 2/2_a c ,

c- /2 W2od (24)
o

It is of interest to give the value of A for two swirl velocity distribu-

tions of interest. For a constant vorticlty core (solid body rotation) a

simple calculation gives A = 0.25 . For a "decaying" vortex core based on

the similarity solution for viscous diffusion of a point vortex (here

ac = 4_-_), a more difficult calculation gives A = -0.058 • Typically, C

will also be a number of order unity or smaller. The important conclusion is

that the cut-off distance given in Eq. (22) is roughly the same order as the

vortex core radius.

The Biot-Savart integral over the curved arc in Figure 4 is done most

conveniently in polar coordinates. When the point of evaluation is on the arc

itself, it is possible to do the integration analytically. The details of the

calculation are omitted since it is staightforward and a similar approach has

been used in other published work. The result shows that the induced velocity

is normal to the plane of the arc and is given by

4R Y 81 82
r in in [(tan _--)(tan _--)] (25)wSl = - 4---_ d 8_R

c

In this result, terms of order (dc/R)2 have been neglected in deriving the

first term on the right side. This approximation is consistent with the

accuracy of the analysis underlying the derivation of the cut-off distance

formula.
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2.2 Element Connection Procedure

A special procedure is required to connect curved vortex elements to form

a wake. A similar problem does not arise for straight-line elements, since

every two connection points uniquely determine the length and orientation of a

straight-line segment. One way to locate a curved element is to specify two

end points and a third point along the arc. There are other possibilities as

well, such as the specification of two end points and one end point tangent

vector. In any event, there are several ways to generate a connection scheme

given a set of collocation points through which the arc must pass.

The first issue to be faced is whether the wake shape is to be fitted in a

local or a global manner. An example of the global approach is to first fit

all the collocation points at once using a high order polynomial curve flt or

a spline method with strong continuity conditions between the spline

segments. The curve fit can then be used segment-by-segment to calculate the
appropriate length, curvature, and orientation of the curved vortex elements

to be placed between the collocation points. There is at least one strong

objection to the global approach. If a disturbance or shape change is

introduced in one part of a wake, it will have someeffect on the wake shape
everywhere else due to the global nature of the curve fit. Part of this

effect on other parts of the wake will come from changes in the Biot-Savart

integration, as it should, but another part will come from the curve-flt

procedure itself, which has no real physical basis in the fluid mechanics of

the wake. This difficulty argues strongly for the use of an element

connection procedure which is based on (relatively) local information.

Figures 5a, b and c show three methods of locating and connecting vortex

elements based on the three point method of locating arcs. It should be

stressed that this discussion applies primarily to the BCVE, namely to the

location of elements not passing through the point where the velocity is being

evaluated. The method of locating the SlVE, which must be compatible with the
BCVElocation method, will be explained later,

17
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Figure 5a shows the end-to-end method of connecting arcs. Arcs are passed

through each set of three points and touch end-to-end. The advantage of this

method is that it uses the least number of arcs to span a given number of

collocation points. Note that half as many arcs as straight line segments are

required. One disadvantage is that fairly long elements must be used since

two intervals (3 points) must be spanned. This may lead to some loss of

accuracy since larger elements are somewhat less accurate, especially if the

velocity near the element is needed. A stronger criticism is that while the

method does a good job predicting the curvature near points j-I and j+l ,

it behaves as if the curvature at point j is the average curvature of the

two butted arcs. A much better estimate of the curvature at point J is

obtained by passing an arc through the three points j-i , j and j+l . It is

possible to construct examples in which this method would even predict the

wrong sign for curvature at point j . Usually, such cases would occur in

practice only if too few collocation points are used to model the wake.

Figure 5b shows the overlap method of connecting arcs. Each overlapped

arc is of half strength. The approach effectively averages the position and

curvature of the vortex based on the location of the four nearest points.

Because each arc spans two intervals, the number of arc calculations equals

the number of intervals, even though there are two arcs in each interval.

Again, a disadvantage of this method is that long arcs are still needed.

Another disadvantage is that the effective averaging that results from

overlapping the elements may break down if the local wake configuration is

very nonplanar, if successive interval sizes vary considerably, or if the

curvature is changing rapidly. These conditions may lead to situations where

the overlapped elements are not sufficiently close to each other to provide a

credible average.

Figure 5c shows the interpolated point method, which has been chosen as

the preferred connection scheme for the present work. An intermediate point

is computed within each interval between collocation points. For example,

the location of the point j between j and j+l is interpolated based on

the average properties (curvature and orientation) of the arcs passed through

point sets J-i , j , j+l and J , j+l , j+2 . A curved vortex element is
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then located to pass through the set of points J , j , J+l . The properties

of the element arc thus reflect the consistent use of information from the

location of the four nearest points. An advantage of this method is that the

arc length of the elements can be relatively short since only one interval

between points is spanned by each arc. This approach is also not subject to

the other possible disadvantages of overlapping, since only a single arc is
used in each interval. A disadvantage of the method is that someadditional

complexity is required to locate each interpolated point. In addition, at

each point where two arcs meet there will be a discontinuity in slope and

curvature. However, the average effect seen in the nearby velocity field will

be essentially correct, since curvature information from both sides of the

connecting point is used for each of the arcs.

Residual discontinuities in slope and curvature are inevitable with any

simple arc element model. They could be removed by using a higher order

element model, e.g., an arc with torsion and linearly varying radius of

curvature, with slope and curvature continuity conditions at the end points.

However, these refinements are judged to be not worthwhile for current

purposes. If connection point discontinuities are a problem, it is better to
increase the number of collocation points in the wake to allow for a smoother

fit. Including more points directly adds more real information about the wake

shape than can be obtained by further refining the element model. However,
the reason for using a curved element at all is that it makes the best use of
the information available locally in a set of collocation points. Ultimately,

an adequate number of collocation points must be determined based on the

resulting smoothness of the wake, and their effect on the convergence

properties of the solution. The optimum spacing of these points will not

necessarily be uniform, with certain critical regions requiring higher point

density (e.g., blade/vortex interactions) and other regions requiring very few

points (e.g., the far wake). A more detailed study of the accuracy of fitting
elements to a set of collocation points is found in Section 3.

To calculate the velocity at a collocation point in the wake requires that

the self-lnduction vortex element, SIVE, also be used. As discussed earlier,

the element shape is a circular arc passed through three collocation points.
20



The SlVE gives the velocity at the intermediate collocation point between the

two end points. As shown in Figure 6, if the velocity is desired at point

j , the SIVE spans the point set J-i , j , J+l while the other points are

spanned by BCVE's located by the interpolated point method. Whenthe velocity

is evaluated at a different collocation point the element patterns must be

shifted accordingly. If the point of evaluation were not on the filament,

then the SlVE shown in Figure 6 would be replaced by two BCVE's. If straight-

line elements were used instead, then every BCVEwould be replaced by a

straight-line element.
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3. ACCURACYANDCALCULATIONTIME

3.1 Overview of Accuracy and Time Issues

The use of Basic Curved Vortex Elements (BCVE's) to model the tip vortex

in helicopter free-wake calculations is described in the previous section and

in Ref 13. This approach replaces the usual stralght-llne vortex elements

with curved vortex elements. Because of their curvaturej these elements

provide a more natural geometric fit for the wake shape. There are two

benefits to this approach, both of which derive from the significant improve-
ment in fitting accuracy. First, the curved elements allow more accurate

calculation of the velocity field at points near the vortex filament. This

accuracy is an important issue in a rotor wake because successive turns of the

curved tip vortex are often in close proximity. The second benefit is that

much larger elements can be used. Since free-wake calculation time depends

strongly on the number of elements (as explained later), reducing the number

of elements has a strong effect on the calculation efficiency. However, there
is also a penalty associated with the use of curved elements. Because the

curved element model involves an increase in analytical complexity, the

computer time to do individual element calculations is increased, and this
increase partially offsets the benefit of fewer elements.

The purpose of this section is to give a relatively complete picture of

the velocity field accuracy and calculation time of curved elements.

Comparison is made to the stralght-llne element method, and therefore

considerable information is provided about the performance of this more

traditional approach. This information should be useful in assessing the

accuracy of calculations done by either method. One qualification in the

comparisons to be made should be stated clearly. The results for curved

elements are based on their current level of optimization. Because this

approach was developed only quite recently, future significant improvements in

efficiency are quite possible. Nevertheless, the curved elements perform
extremely well in their current form.
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It should be noted that other researchers 9-II have also recognized the

need to account for filament curvature to improve accuracy, at least for the
wake of a rotor in hover. The methods employed involve local curvature

correction procedures to the straight-line element method. The present

approach addresses the accuracy problem through the development of a curved

element for general use.

3.2 Numerical Evaluation of the Biot-Savart Integral

The central problem in free-wake analysis is to calculate the effect of

the tip vortex accurately and efficiently. Since this must be done

numerically, the Biot-Savart integration has to be discretlzed in some

manner. In principle, to obtain an accurate answer, the discretizatlon

distance along the vortex filament must be small compared to the minimum
distance from the filament to the point of evaluation. Because it is

sometimes necessary to determine the velocity at points very close to the

filament, strict implementation of this condition would require a very large

number of discrete elements. However, using such large numbers of elements

would be prohibitive in terms of computation time. It is therefore necessary

to keep the number of elements to a minimum and still try to maintain

accuracy.

The Biot-Savart integral for the velocity field of a constant strength

vortex filament is given by:

÷ r f
q = - 4-Y r3

C V

(26)

+

where r is the distance vector from the filament to the point of
v

evaluation, and d_ is the differential arc length vector tangent to the

arc. In principle, this integral can be accurately evaluated along the

filament contour by several numerical methods.
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The most direct approach is the straightforward approximation of the

integral by a summationof the form:

-> +

N rviXAs i N

q = - 4--_ 3 (27)
r

i=l vi i=l

The velocity field due to one of the discrete elements in this summation is of

the form:

r2%
+ F s +

qD = 4_r [x 2 + r213/2 e8 (28)

where £s = IAsil " This velocity is expressed in a local coordinate system

centered on this element, as shown in Figure 7. Here r and x are coordin-

ates in a cylindrical system, with the x-axis in the A_ direction. This

treatment of the integral is expected to be accurate when Irvi I >> IAsil ,

namely when (x2 + r2)1/2 >> As "

A somewhat more accurate approach is to approximate the curve shape by a

series of stralght-llne segments, and then evaluate the integral exactly for

this approximate shape. The errors associated with this approach are related

only to the geometric approximation of the curve. The velocity field of a

finite length vortex line can be evaluated exactly in closed form. Expressed

in the same local coordinate system, the result is:

x +2_s X-_s

l(x+ s)2+r2 l(x- s)2 + r2

%8 (29)
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26



The contribution of the total vortex filament is then obtained by stringing

together these stralght-llne elements to approximate the curve. This

stralght-line element approach has been used in many previous free-wake

calculations. Its accuracy is one of the main concerns of this report.

It is of some interest to compare the accuracy of the approaches

represented by Eqs. (28) and (29). Figure 7 shows the ratio of velocity

magnitudes, I_DI/IqSL I , plotted versus location around a straight-line

element. The error associated with using Eq. (28) is small (and rapidly

decreasing) for radial distances in excess of about 1.5 element lengths.

Because the element contributions fall off rapidly with increasing distance,

the errors associated with large x/% s in Figure 7 are actually not very

significant in absolute terms. It is clear that for distances not too close

to the filament, the simple dlscretlzatlon of the Biot-Savart integral given

in Eq. (27) works as well as the straight-line approximation. Comparing Eqs.

(28) and (29) also shows that the functional form of Eq. (28) is somewhat

simpler than Eq. (29). Although this might lead to a slight advantage in

computational efficiency, the difference is probably not too significant.

Nevertheless, the simple discretized element is certainly a viable option in

some circumstances. In fact, its simple functional form allows an efficient

way to sum the contribution from a semi-infinite array of vortex elements, and

thus forms the basis for the forward flight far wake model described in

Section 4.

Since the stralght-llne element is widely used, it is of primary

importance to understand its performance. As mentioned, the use of straight-

llne elements constitutes a geometric approximation of the vortex curve.

Reference 13 showed that straight-llne elements introduce significant errors

in the velocity field near a vortex ring (these results are reviewed in

subsection 3.3). The errors associated with straight-line elements can be

classified as position errors and curvature errors, see Figure 8. Posltion

errors arise because the straight-llne elements do not coincide with the

filament position at most points along the curve. The size of the position

error depends on the local element displacement, _s ' as compared to the

distance, r , from the filament. Curvature errors arise from the failure to
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duplicate the local curvature of the filament. The analytical solution for

the velocity field near a curved vortex filament shows that the local

curvature introduces a velocity normal to the plane of the arc. For a finite

strength filament of infinitesimal cross-section this velocity component

depends logarithmically on r , see References 18 and 19. This local

curvature effect is not simulated at all by individual st ralght-line elements

because they are not curved. Therefore, the curvature error is present to

some extent everywhere on a filament modelled by stralght-llne segments. The

position error varies along the filament, being insignificant at the

collocation points where the straight-line elements coincide with the curved

filament, and reaching a maximum in between. Typically, position errors are

larger than curvature errors. The results of a detailed study of the errors

associated with using stralght-line elements are presented in later

subsections.

It is possible to consider more sophisticated vortex elements than the

simple dlscretized element of Eq. (28) or the stralght-line element of Eq.

(29). The next level of sophistication is to introduce curvature into the

element in order to improve its fitting accuracy. The Basic Curved Vortex

Element (BCVE) described in detail in Section 2 of this report represents this

next level of refinement. The trade-off that must be considered is the

increase in analytical complexity of the element versus the potential

improvement in fitting accuracy. From an efficiency standpoint, a more

complex element must be capable of offering a sufficient improvement in

accuracy such that fewer elements of larger size can be used. In a free wake

calculation the pay-off from using fewer elements is capable of off-settlng

the penalty associated with the increase in complexity of individual elements.

The computer time and accuracy of curved versus straight-line elements

will be dealt with in detail later. However, the fact that curved elements

are capable of a dramatically better geometric fit can be readily

demonstrated. To demonstrate this point the relative ability of these

elements to fit a circular arc will be considered. Referring to Figure 8, a

simple calculation shows that the ratio of maximum position error to local

radius of curvature for straight-line elements is
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6s i 2 2R_" " 2- 12"R) _ 0.125 (30)

where to obtain a simple expression it has been assumed that £s/2R << i .

For comparison, the BCVE has a parabolic shape touching the arc at the

midpoint and end points as was shown in Figure i. The total length spanned by

a curved element is denoted by £c = 2£ in Figure i. Again, assuming

£c/2R << I , it is possible to show that for the BCVE

_c 3 £c 4 £c 4

R-- _ 8.16 (_) _ .00146 (_--] (31)

The maximum fitting error, 6c , for the BCVE occurs at the quarterpoints,

halfway between the midpoint and end points.

Clearly, the BCVE makes much smaller fitting errors, and these errors

decrease much more rapidly with decreasing element size. For equal element

size, £c = £s ' the ratio of fitting errors is

6c-- , .012 [ (equal size)
6s

(32)

As explained later, it is necessary to keep £c < R . Clearly, the fitting

error associated with using curved elements is very small; in fact it is about

two orders of magnitude below that of straight-llne elements. It is also

interesting to see how large a curved element must be for equal fitting error,

namely if 6c = 6s • The ratio of element lengths for equal error is

-- _ 9.2 (equal error)
ks

(33)

which shows that a curved element can be about an order of magnitude larger
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than a stralght-llne element for the same fitting error. Considering Eqs.

(32) and (33) together, it is clear that a balance can be achieved in which

larger curved elements are used but the fitting error still remains very small

in comparison to that of stralght-llne elements.

The process of predicting the shape of a curve based on a set of

collocation points contains certain implicit assumptions. The primary

assumption is that the curve is smooth and changes only gradually over the

separation distance between the collocation points. In practice, this means
that the local radius of curvature must be larger than the local separation

distance between collocation points. The radius of curvature can be estimated

by passing an arc through each set of three collocation points. Figure 9a
shows that when points are positioned such that the estimated radius of

curvature exceeds the spacing between the points, there is no longer a

rational basis for choosing one smooth curve through these points over

another, even though the curves may differ considerably. However, when the
radius of curvature exceeds the point spacing, as in Figure 9b, the location

of the curve passing between these points can be estimated within a narrow
latitude. An estimate of this latitude is the degree of overlap between arcs

passed through adjacent sets of three points. Curved elements using the

interpolated point method naturally fall within this range, but straight-line

elements almost always fall outside it.

From the standpoint of using curved elements, the fundamental geometric
limitation is the ratio of element size to local radius of curvature. When

_c/R > i , the possibility of choosing the right curved element shape is lost,
as indicated in Figure 9. However, when _c/R < i the fitting accuracy will
generally improve rapidly, as indicated by Eq. (31).

It is important to point out that the limitation on element size should

not be considered entirely from a geometric point of view. It is not always

known in advance what element size is appropriate for a given calculation.

Using elements that are too large will filter out someof the finer structure
in the vortex filament shape. This may or may not be important depending on

what quantities are to be calculated, and what is deemedan acceptable trade-
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Figure 9. Curve fitting accuracy as a function of the ratio of point

separationto radius of curvature.
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off between accuracy and efficlency. Furthermore, there may be considerable

stretching and distortion in someportions of the flow, causing the ratio of

element length to radius of curvature to change significantly. Thus, the

choice of element size depends on a numberof issues related to the particular

problem to be solved.

3.3 Accuracy of Curved Vortex Elements

This s_bsection describes the calculated results used to assess the

accuracy of the basic curved vortex element, BCVE, as compared to straight-

line elements. The emphasis is on the accuracy of the new BCVE, since self-

induction elements llke the SIVE have been used previously. Although the

calculated results necessarily deal with specific vortex filament

configurations, the analytical work presented in the next subsection shows the

sameconclusions apply to arbitrary filament shapes.

The first issue is the accuracy of the Biot-Savart integration procedure

for a parabolic arc. This is a concern because it was necessary to model one

of the terms in the integral in order to perform the integration

analytically. The correct answer for a parabolic arc can be obtained

numerically by dividing the arc into so many small curved elements that the
calculated result becomesindependent of the number of elements used. This

result can be used to establish the accuracy of a single BCVEcorresponding to

the sameparabolic arc shape. As expected, the errors are found to Increase
as the arc size increases and as the distance from the arc decreases.

It is sufficient to present some results for the extreme case of a

parabolic arc corresponding to 8o = 90° , see Figure i0. At the point a
distance z = O.IR directly above the arc, the error in any of the three

velocity components is at most a few percent. For the corresponding results

at z = 0.3R , the errors are well under 1%. Although this level of accuracy

is already very good, reducing the arc to a more realistic size causes a

strong reduction in the error. This reduction occurs because the relative

importance of the modelled term in the BCVEanalysis increases as the square
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of the arc size. It is concluded that the integration procedure used for

parabolic arcs introduces negligible errors.

Having established that the BCVE can represent a parabolic vortex filament

very accurately, it is next important to see how accurately these elements can

represent the velocity field of other vortex shapes. The vortex ring provides

a simple test case.* Figures II and 12 show calculations of the velocity, w ,

normal to the plane of the ring at different distances directly above the

vortex itself. The results are shown as a function of azimuthal angle, e ,

for different numbers of BCVE's and straight-line elements. The correct

answer is independent of 8 . For any number of elements of either type the

accuracy improves rapidly with increasing distance from the vortex. In all

cases, relatively few curved elements are superior to many more stralght-llne

elements. Note that only 4, 6 and 8 curved elements are compared with 8, 12

and 24 straight-llne elements.

Looking first at the curved arc element results, the errors for small z

can be attributed to two effects: position errors and curvature errors. The

parabolic elements lle directly below the point of evaluation only at the

points where the parabolic arcs and circular ring coincide. For instance,

this occurs every 45 ° for the 4 element ring, and the error is seen to be a

minimum at e = 0 and e = 45 =, the arc end point and midpoint,

respectively. The residual errors at these points are due largely to the

local variation of curvature along the parabolic arc, which is particularly

important near the ring. The maximum error occurs in between and is a

combination of curvature and displacement errors. The maximum displacement

errors occur near the arc quarterpolnts. The analytical solution for the

velocity field near a vortex ring filament shows that the normal velocity, w ,

depends on the radius of curvature. At 8 = 0 (an end point) the parabolic

The analysis presented in the next subsection considers stralght-llne

element errors on filaments of arbitrary shape. This analysis shows that

velocity errors of the type encountered in the vortex ring test case also

occur for general filament shapes.
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arc overestimates the radius of curvature and underestimates w , whereas at

8 = 45 ° (a midpoint) the radius of curvature is underestimated and w is

overestimated. The figures show that increasing the number of curved elements

rapidly reduces both position and curvature errors. It should also be noted

that the 4 element ring is presented as a limiting case. Because the element

length exceeds the radius of curvature, the basic condition for accurate

fitting (£c/R < i) is actually not satisfied.

In comparison, the ring made of stralght-line elements* shows much worse

errors, particularly near the ring, see Figure 12. Position errors are

naturally much larger for straight-llne segments. Curvature errors are

severe, because the only simulation of curvature comes from the change in

orientation from segment to segment. In fact, the portion of the normal

velocity induced by local curvature, found in the analytical solution

described later, is not simulated at all when straight-llne segments are

used. As a general rule, the distance from the ring must be somewhat greater

than a stralght-llne element length in order to obtain accurate results. The

pronounced azimuthal variation seen in the stralght-llne element velocity

field raises a special concern. In a rotor wake, where successive turns of

the vortex may be closely stacked, these azimuthal variations may produce

spurious distortions and instabilities in neighboring turns. This possibility

is seen to be much less likely for curved elements, even if many fewer curved

elements are used.

Figure 13 shows the radial variation of the normal velocity, w , at a

fixed distance above a vortex ring composed of either four BCVE's or eight

stralght-llne segments. The effect of two azimuthal positions is also

shown. The four curved elements generally provide a good approximation of the

exact answer, and are relatively free of azimuthal dependence. On the other

hand, twice as many stralght-llne elements do not perform as well. The
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azimuthally dependent position error associated with straight-line elements

has a pronounced effect on the velocity field near the ring. For either type

of element, increasing the number of elements used, or increasing the distance

above the ring, both lead to rapid improvements in accuracy. The effect is

particularly dramatic for curved elements. For N elements composing a ring,

from Eqs. (30) and (31), the geometric position error is proportional to

(£c/R) 4 _-_14 for curved elements and proportional to (£ /R)2 I___ fors
stratght-lin_ elements.

Referring again to Figures ii, 12 and 13, it is clear that the velocity

component, w , normal to a curved vortex filament is a sensitive indicator of

calculation accuracy. Figure 13 in particular shows that w is subject to

rapid variations in the region directly above the filament, and thus to

calculate this quantity accurately is a challenge for any vortex element

method. Therefore, the ability to correctly predict this quantity is used as

a criterion for accuracy in this report. It should be noted that the

percentage error in w , although it is a convenient way to present results, is

not an indication of comparable percentage error at all points in the flow.

At many places the large swirl velocity dominates, making the percentage error

much smaller. However, the magnitude of the error in w is an indication of

the general magnitude of the velocity error at points equally close to the

filament. At points close to the filament, the magnitude of this error is

shown in the next subsection to be the same order as that of the self-

induction effect. Therefore, in cases where filaments are in close proximity

to one another, these errors are too large if such calculations are to be made

to a consistent order of accuracy.

3.4 Analysis of Straight-Line Element Errors

The previous subsection presented computed results showing the errors in

the velocity near a vortex ring simulated by straight-line vortex elements.

It will now be shown that the errors can be predicted by an analytical model

that assumes the major error contribution is due to the nearest one or two

elements. The local nature of this model demonstrates that similar errors
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will be encountered for arbitrary vortex filament configurations, and not Just

for the vortex ring configuration studied numerically. In other words, it is

possible to draw general conclusions about the magnitude and behavior of the
errors associated with using straight-llne elements.

As a starting point, the percent errors in normal velocity, w , above a

vortex ring are summarized in Figure 14. The errors are presented as a

function of N , the number of elements and of collocation points, for two

distances above the ring. The relative azimuthal locations where the

calculations were performed are denoted as end point, midpoint, and quarter

point. The end point location is directly above a collocation point; the

midpoint location is halfway between collocation points; and the quarter point

location is halfway between the end point and midpoint locations. The results

presented in Figure 14 correspond to those shown earlier in Figures II and

12. When fitting a circular arc, straight-line elements make the maximum

error at the midpoint location where the geometric position error is

largest. The minimumerror for straight-llne elements occurs at the end point

location. However, for the BCVEthe quarter point error is largest, the

midpoint error is smallest, and the end point error is in-between. It is

obvious from Figure 14 that the BCVEis superior when considered purely from

the standpoint of accuracy. It produces large errors only when so few

collocation points are used that the element length exceeds the radius of
curvature.

An interesting feature of Figure 14 is the strong similarity between the

straight-line element results for z/R = 0.I and z/R = 0.3 • It will be

shown that these two calculations can be collapsed into a single curve once

the appropriate nondlmensional variables are introduced. It is also of
interest to know that the stralght-line error diminishes as N-2 as the

number of elements become large, whereas the BCVEconvergence rate is much
faster, roughly N-4 .

To approach this problem analytlcally consider Figure 15 which shows

stralght-line elements approximating an arbitrary curved filament with local

radius of curvature R . Suppose the point of evaluation is close to the
41
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filament in the sense that r << %s ' but still far enough away that

r >> 6s . Furthermore, it is assumed that there is an adequate number of

collocation points along the filament, so that %s << R . Only the midpoint

and end point locations will be considered in detail, since these produce the

maximum and minimum error, respectively. In the midpoint case, at distances

less that an element length, it is reasonable to suppose that the nearest

element produces most of the error. Similarly, the two adjacent elements

should be the important contributors in the end point case. These cases are

illustrated in Figure 16a,b respectively. The analytical approach is to

estimate the error by calculating the difference between the velocity field of

these one or two straight-line elements and the corresponding arc of radius

R . Accounting for the smaller errors of more distant elements can then be

included as a refinement.

The required calculations are relatively straightforward, but somewhat

lengthy. Much of the effort is directed at expanding the results in the small

parameters r/% s . However, this work ultimately leads to simple

nondlmensional results. Therefore, the required steps are only explained

briefly, and the principal results are cited and interpreted.

The straight-line element contribution given in Eq. (27) is expressed in a

coordinate system centered on the element as shown in Figure 7. The velocity

must be evaluated at the appropriate position and re-expressed in the coordin-

ate system of either Figure 16a or 16b, depending on whether the end point or

midpoint problem is being considered. As an alternative, the straight-llne

integration can be performed directly for the appropriate element orien-

tations. Along the way, the results are expanded in the small parameters

r/£ s , £s/R and 6s/r , and, in a conslstant manner, only lowest order terms

are retained. This step allows the velocities to be expressed as simple

formulas which are subject to physical interpretation. After considerable

manipulation, the velocity contributions of the nearest straight-line

element(s) in the midpoint and end point cases are, respectively,
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and

+ I r [i 21r 2.__ _ )];
qSL IMP 2_r £-- 0s

r I[!r_s_ 2 1 + f!r_s_2
4_R _4_r _ -_] coSO_r _4_r J[

£

+ I F [I l[r ]2 ÷ F (?) +qsn EP " 2_r - 2-_s J ]e8 4_R sinO e o

(34)

(35)

As expected when near the elements, the dominant term* is r/2_r , the swirl

velocity of a two-dlmensional vortex. The remaining terms correct for the

finite length of the elements and their orientation and offset relative to the

point of evaluation.

The corresponding results for a curved arc must also be derived. As

Figures 16a and b indicate, a Biot-Savart integration over a finite length

centered curved arc is required in either case; only the span of the arc is

different. In general, such an integration comes out in terms of special

functions (elliptic integrals). However, for the small parameter assumptions

being invoked, the difference between the circular arc and a parabolic arc is

higher order. Therefore it is easiest to start with this simplification, and

the integration then proceeds as the BCVE derivation described in Section 2.

Since the arc is small in the sense that £s/R << i , the higher order term
24

e x I modelled in the BCVE derivation can be neglected here. The fact that

the arc is centered about the point of evaluation is a further simplifica-

tion. That the BCVE and the circular arc answer coincide in this limit

illustrates again that the BCVE is an inherently more accurate element.
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appears to be the most singular, cannot dominate because of the

restriction that r/£ s , £s/R , and 6s/r all be small.



The velocity contributions from the curved arc(s) between the nearest

collocation points in the midpoint and end point cases are, respectively,

qCAMP 2_---_ s

+ T_ [in - I + 3 ] cos0 er
s

- [inI_ ) + 3(_) 2] sin@ _8
s

and

+ I r [i I _r ]2 +qCA me = 27----{ - 2-<_ssj ] e8

3r 2] +i +  Iy-) cos0er
s

2£ 3(r ]2 ÷ 1

- [in(--_) + [<_S; ] sin@ e8!

(37)

As before, the dominant effect is the F/2_r swirl velocity, while the

remaining terms account for the finite length, changing position, and

curvature of the filament. The logarithmic terms account for the local

curvature of the filament and are missing in the corresponding straight-line

results.

Viewing Eqs. (36) and (37) as correct, and Eqs. (34) and (35) as the

straight-llne element approximations, the error associated with the local

stralght-llne elements is obtained by finding the difference between the

corresponding expressions. Thus, the error associated with the filament being
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locally represented by straight-line elements is given by

and

+ r {[i 3AqL[Mp = 4_R _(r--) + in - _
+ 3 2] cosO e r

s

in(?) + _- 3(_) 2] sinO e 0
s

F

4_R
EP

[ 2¢) 3(r }21 +- -- In( - i + [_T- j j cosO e r
s

+ [(_I- ln(--_)- 3rr ]2 +_T- j ] sinO e0
s

(38)

(39)

where the subscript L indicates that the error is from the local element(s)

only.

Aside from the appearance of different constants in the expressions, the

major difference between Eqs. (38) and (39) is the additional term involving

(£s/r) 2 in the midpoint error. Rewriting this term using Eq. (39) gives

r _(£s]2 F6s

%-_ 4 <T j = 2
2wr

(4O)

which shows that this term represents a vortex dipole of strength F6 s . This

dipole arises from the position error, 6s , of the vortex filament which is a

maximum in the midpoint case. The dipole comes from subtracting away the

vortex at the correct location and adding the straight-line vortex at an

incorrect location in its place. This dipole term is the dominant source of

error, and is largely responsible for size of the midpoint error. The other

terms in Eqs. (38) and (39) are associated with incorrect orientation and the

absence of curvature.
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The error from the remainder of the straight-line elements must also be

evaluated. It can be shown that only the next few nearby elements induce any

significant error. Surprisingly, to lowest order this additional error has

the extremely simple form of a constant velocity normal to the filament,

independent of r/£ s . Analysis shows that as £s decreases, the fitting

error gets smaller, but the sources of error are nearer. These two effects

counterbalance each other to lowest order leaving a constant residual error

velocity. This error from distant elements on a constant curvature arc was

evaluated numerically, with the results

and

+ I F + + sin0 _8] (41)AqD MP = 4_--R(.270)[- cos@ er

+ I . r + sine&qD EP 4_----R('078) [- cos8 Sr
(42)

The midpoint error term is larger because the distant elements are closer.

The total straight-line errors for the midpoint and end point cases can be

obtained by adding Eq. (41) to Eq. (38) and Eq. (42) to Eq. (39), giving in

either case

+ -> ÷

AqTOT = Aqm + _qD (43)

Therefore, for r/£ << i ,
S

_qTOT 4_R 4-'r--" + in(_--)- 1.770 + 3(_----)2 ] cosO _r
MP s

[$[ s)2 ln(_) + .770 - 3(-_--)2] sin 8 e e+ 4"r -
S

(44)
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and

+ r [in - 1.078 + _--_ ] cos@ er
AqTOT EP = 4_'--R s

£ 2£ + }+ [(_) - In(_) + .078 - 3(_s)2 ] slnO e 0

(45)

These equations differ very little from Eqs. (38) and (39), demonstrating that

the local element errors are by far the most important. The important feature
÷

of this result is that the total error, AqTOT , once nondimensionalized

by F/4_R , depends only on the angular position, 8 , and on the

nondlmensional distance r/£ s . This establishes the order of magnitude of

the error, and shows that its dependence on distance scales with the element

length.

Figure 17 shows the results of Figure 14 replotted in this nondimenslonal

form. The stralght-llne errors at different distances from the ring now

collapse onto the same curve. The analytical formulas for the midpoint and

end point errors, Eqs. (44) and (45), are seen to agree well with the computed

results as long as r/£ s is sufficiently small. The apparent failure of

these formulas as r/£ s ÷ 1.0 is only due to the breakdown in the small

parameter expansions used in their derivation, and is not unexpected. The

ability to collapse the error curves in this way is a universal result, and is

not unique to vortex ring configurations. Normal velocity errors from other

filament shapes would fall on the same curves in Figure 17. This is demon-

strated by the analytical derivation which makes no specific assumption

regarding the overall filament shape. Equations (44) and (45) are generally

applicable to predict stralght-llne element errors for arbitrary filament

shapes.

The BCVE errors from Figure 14 are also replotted in Figure 17. The BCVE

errors do not collapse onto universal curves because their fitting errors have

a somewhat different functional dependence. Essentially, the BCVE fit
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improves very rapidly as r/£ s increases, as can be seen by the relatively

steep slope of the BCVE curves. The worst BCVE errors are typically about two

orders of magnitude smaller than the corresponding stralght-llne element

errors. These trends correspond roughly to the formulas for the geometric

displacement errors given earlier in Eqs. (30) and (31).

Figure 17 also shows that the nondlmensionallzation collapses the results

in the region of final convergence as the elements become smaller compared to

the distance from the filament. In this case, the point of evaluation is

still effectively close to the filament, namely r << R • However, because

the point of evaluation is distant relative to the element length, the

distinction of being over an end point or a midpoint is washed out. The case

of r/£ s > I was also studied analytically. It can be shown that the

residual error is of the vortex dipole type (very much llke the predominant

term in the midpoint error discussed earlier). The dipole strength can be

shown to be F_ , where _ is the average geometric displacement error
s s

along the arc. It can also be shown that _ = 2 _ /3 where 6 is given
8 s s

in Eq. (30). The final convergence error velocity is then found to be

+ F I_£s12 [cosO _ + sinO 28]AqF = _ 6[r--_ r r/£ > i (46)
s

Note the similarity to the dipole terms in Eq. (44). This result is plotted

in Figure 17 and shows excellent agreement with the numerical simulation for

r/£ s > i . For r/_ < i , the formula also predicts the straight-llne

quarter point error in normal velocity to good accuracy, although this appears

to be somewhat fortuitious. Equation (46) exhibits the same nondimensional

dependences found earlier in Eqs. (44) and (45).

At this point, the results of this subsection are summarized. General

formulas, Eqs. (44), (45) and (46), have been developed to predict the errors

associated with the use of straight-line elements. These formulas show how

the errors for different cases can be nondimensionalized and collapsed onto a

single curve. The agreement with computed results is excellent. The errors
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are induced primarily by the nearest elements and are thus local in

character. Fundamentally_ stralght-line elements induce errors on the order

of Y/4_R , where R is the local radius of curvature, whenever the point of

evaluation is within an element length of the vortex filament. The

corresponding errors induced by the BCVE method are typically two orders of

magnitude smaller.

The size of the straight-line element error raises a disturbing question

about the consistency of free wake calculations using stralght-line

elements. It is generally agreed that the self-lnductlon effect should be

included, and this effect is of order Y/4_R , as the discussion of the SIVE

in Section 2 shows. However, the above analysis has demonstrated that

stralght-llne element errors are of this same order whenever the point of

evaluation falls within one element length of the filament. Note that the

general nature of the analysis demonstrates that this will be true for

realistic wake configurations as well as for idealized filament configurations

such as rings or helices. It is frequently necessary to calculate velocities

within one element length of vortex filament in free wake calculations, both

in hover and forward flight. For instance see the forward flight calculations

presented later in Section 4. It is not formally correct to retain some

effects of order Y/4_R while discarding others. Furthermore, the local

radius of curvature, R , is often much smaller than the rotor radius,

considerably amplifying effects of order F/4_R in high distortion portions

of the wake.

3.5 Calculation Time

This subsection describes the factors that influence the computer time

required to determine the velocity field around vortex filaments. * The

It should be emphasized that these calculations deal only with the wake

and are not rotor performance calculations. In practice, wake calcula-

tions of this type are only one part of the larger calculation to

determine blade loading, blade dynamic motion and vehicle trim.
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relative times to perform calculations using either straight-line elements or

curved vortex elements are compared. The dependenceof time on the type of

element and the number of elements is evaluated for both prescribed wake and

free wake type calculations. The important issue of calculation accuracy was

treated in the previous subsection and the relationship between time and

accuracy is studied in the next subsection. In addition to explaining the

factors influencing calculation time, the discussion below outlines the

operations required to implement the curved vortex element method.

The stralght-line element calculation procedure was taken from Appendix I

of Ref.3 (essentially the same approach is also derived in Ref. 8). This
method is straightforward and efficient. Given two points in a Cartesian

coordinate system, the three velocity componentsdue to a stralght-line vortex

element connecting these points are found directly in the same coordinate

system. The time to do one such calculation is denoted by TSL •

The Basic Curved Vortex Element (BCVE) calculation procedure was taken

from Section 2 of this report. There are several factors which affect

computation time. In the first place, there are actually two element
calculation times. As mentioned in Section 2, for high accuracy near the

vortex filament, it is necessary to evaluate the element integrals in three

sub-lntervals. The time to do this evaluation is denoted by TCE(S) •
However, at distances greater than roughly three-quarters the distance between

the element end points, the sub-interval integration is not required for
accurate results (the error associated with this simplification is less than

1%). The time to do a BCVEcalculation without the sub-lntervals is denoted

by TCE . In practice, the majority of BCVEcalculations are of this type.

This simplification is important since TCE= 1/2 TCE(S) • The BCVEelement
model, as currently formulated, gives the velocity components in a local

element-flxed coordinate system, so the velocity components in a global

coordinate system must be obtained by a subsequent transformation. This

transformation is included in the times TCE and TCE(S) .

Additional operations are required to use the curved element model. The

curved element must be sized, located and oriented in space. Of the possible
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approaches to do this, a scheme called the interpolated point method was
chosen. It is convenient to divide these operations into three separate

computer times. The first time, TA , is associated with passing circular
arcs through each set of three adjacent points and finding the radius of

curvature, the arc angles, and the vectors (tangent, normal and binormal) at

the central point which effectively locate the arc in space. The second

time, Tip , is associated with the interpolated point method. An
interpolated point is located between each two collocation points by averaging

the midpoint locations of the two circular arcs passed between these points.

The third time, TG , is associated with finding the geometry and local
coordinate system for the BCVEpassing through each two collocation points and

their interpolated point. The transformation matrix required to go from local

to global coordinates is determined in this process.

Whether BCVE's or straight-line elements are used for most of the vortex

filament, the velocity at a point on the element, induced by the element

itself, is properly found using a Self-Induction Vortex Element (SIVE) of the

type described in Section 2. This element uses a circular arc filament passed
through three adjacent collocation points. The self-induced velocity is found

at the middle collocation point and is normal to the plane of the arc. The

time required to do a calculation of this type is conveniently divided into

two parts. The first contribution is the time, TA , associated with finding
the properties of the arc passed through three points, including the tangent,

normal and binormal vectors which form the local element coordinate system at

the central point. Exactly the sameset of operations are required as part of

the procedure to establish the BCVEgeometry. Thus, the time TA required to
find the geometry for a self-induction calculation need only be done if

straight-line elements are used. If BCVE's are used for the rest of the

vortex, the required information is already available, and need not be

recalculated. A second time contribution, TSI , is the time required to make
the SlVE calculation once the arc properties are known, and to resolve the

self-induced velocity into global coordinates. This portion of the self-

induction calculation time is always required.
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Table 1 summarizesthe definitions of the time coefficients, and gives the

relative values of the ones which ultimately have a significant impact on

computer time.

Now that the times to do individual operations have been defined, it is

possible to develop formulas to make rough estimates of the computation time

for prescribed wake and free wake calculations. It should be stressed that

there is a danger associated with this estimation approach. Efficient

computing involves the development of a dynamic structure in which the various

portions of a program function in concert. The run time is sensitive to the

way in which the various constituent parts are made to interact. The approach

of assigning times to the various individual activities serves to

compartmentalize this process in a way that is conceptually helpful, but is

only an approximation to what may be actually happening in the program. Thus,

the formulas to be given for estimated run times should be viewed as

approximate. Nevertheless, they do show clearly the predominant functional

dependences and relative importance of various parts of the calculation to the

overall time.

Estimated values for some of the time contributions are also given in

Table 1. The values were obtained from numerical simulations performed on an

IBM 3081 computer. The programs were written in FORTRAN and used the FORTRAN

H optimizing compiler. Of coursed the actual values obtained depend on the

system used and on the actual program structure. There was an effort to make

the various parts run efficiently, but the curved element methodology is

complex and further significant optimization of its various parts is believed

to be possible. The subsequent discussion will show that some of the time

contributions in Table 1 are much more important than others in determining

the overall calculation time and, in particular, the time contributions

associated with a given method are not simply additive. Additional results

from these numerical simulations are presented in Subsection 3.6.
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TABLE1

Definition of Normalized ComputerTime Coefficients for
Vortex Element Calculations*

TSL = 1.0 Straight-llne element (Ref. 3)

TCE = 3.3 BCVE (no subintervals)

TCE(S ) = 6.7
BCVE (with subintervals)

TSI SIVE

T A Three point circular arc

geometry and orientation

TIp Interpolated point location

TG BCVE geometry and local

coordinates

Tp Prescribed wake point generation

TOC
Other contributions to velocity (blade

circulation, near wake, far wake, etc.)

TUD Update free wake collocation points

These time coefficients do not indicate the relative free wake calculation

times for curved and stralght-llne elements. The ratio of times depends

on the number of elements used in each case, e.g., see Eq. (57).
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3.5.1 Prescribed WakeCalculations

In a prescribed wake calculation, the wake position is usually determined

according to some relatively simple criterion. For instance, the wake

location can be kinematically determined using the rotor motion and the

downwashfield derived from momentumtheory, or the wake location may be
determined based on a curve fit to experimental data. The Biot-Savart law can

then be used to find the velocity induced by the wake at other points of

interest, e.g., the downwashinduced along the rotor blades. The influence of

the wake on itself is not considered in a prescribed wake approach. Thus,
such calculations tend to be shorter and simpler than free wake calculations.

If Ns straight-line elements are used to analyze a prescribed wake, then
the total calculation time to find the velocity at one point not on the vortex
filament is approximately:

tSL - NsITsL + Tp) (47)

Here Tp is the time to generate the points to locate the elements from a
given wake prescription. If BCVE's are used instead, the time to find the

velocity at one point using NC elements is given by:

tCE " (NC - P)TcE+ PTcE(S) + NcTG + NcTP (48)

Here P is the number of curved elements sufficiently close to the point of
evaluation that subinterval integration is required for good accuracy.

Typically, only a few elements require the subinterval scheme, so that

P << NC •

In formulating Eq. (48) only the time TG is needed to establish the
element geometry. As long as the prescribed wake shape is known analytically,
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as will usually be the case, a set of points intermediate to the collocation

points can be specified as part of the time contribution Tp • These

intermediate points and the collocation points are all that are needed to

perform the operations associated with time TG to locate the BCVE's. In

contrast, if only the collocation points were known, then the intermediate

points would have to be constructed by the interpolated point method, and the

time required would be TA + Tip + TG . This full procedure is required for
free wake calculations, to be discussed later, where the analytical shape is

not known, and only a set of collocation points is given.

Equations (47) and (48) can be used to estimate the relative prescribed

wake calculation times. For large numbers of elements (NC >> P) the ratio

of times is approximately

tCE

tSL
prescribedwake

TCE + TG+ T N C NC
P--= K m (49)

TSL + T N S p N SP

Notice that the time ratio depends linearly on the ratio of the number of

elements. The proportionality constant_ Kp , for the vortex ring accuracy

calculations presented previously is approximately 3.8. This result shows

that in prescribed wake calculations significantly fewer curved elements must

be used to make the run time comparable to that for straight-line segments.

The use of much larger curved elements is not at all unreasonable, since three

or four straight-lines are required to make a crude geometric approximation of

an arc. Although the result of Eq. (49) may appear to show the curved element

approach at a disadvantage for prescribed wakes, the numerical simulations

presented later illustrate that the curved element method is actually superior

in this application when the issue of accuracy is considered. Accuracy is

probably the important consideration in any event, since the run time is less

of a problem in prescribed wake calculations than it is in free wake analyses.
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3.5.2 Free WakeCalculations

Free wake calculations attempt to determine the actual shape of the wake

as a free vortex flow. The primary emphasis is on locating the strong,

concentrated tip vortex. In the usual approach to this problem, the velocity

is found at a number of collocation points along the wake (connection points
for the vortex elements), as well as at other points of interest, such as in

the plane of the rotor. The time-dependent evolution of the wake is then

followed by a time stepping procedure in which the wake is transported by the
net velocity induced at each collocation point. The fact that the influence

of the wake on itself must be computedhas a fundamental effect on the way the
calculation time depends on the number of vortex elements that model the wake.

Only the computer time associated directly with the free wake itself will
be considered in the following discussion. The time associated with the other

functions a particular computer program may perform, such as blade dynamic

motion, vehicle trim conditions, etc., are not discussed and may be considered

as a separate issue. Although there are several schemes for making free wake

calculations, it is sufficient to make time estimates for the commonly used

time stepping Lagranglan approach, which is also the approach taken in Section

4 of this report. Formulas will now be developed for the computer time to

calculate the velocity at each point due to all other portions of the wake.

Note, however, that in many free wake calculation schemes this full updating

of the velocity field is not done at every time step in order to reduce the

computer time. The effect of this sort of optimization on the calculation

time formulas is discussed later.

For the present purpose it is sufficient to consider a rotor with B

blades, each trailing a wake represented by N elements located between

N + 1 collocation points. At each time step the last point and last element

in the wake are discarded, while a new point and new element are added at the

top of the wake to fill the space left by the incremental blade motion.

Because the last point is discarded, it is necessary to find the velocity only

at the first N collocation points. Typically, it will also be necessary to

find the velocity induced by the wake at M other points along each rotor

blade.
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If the full free wake calculation is done using NS stralght-llne
elements and SIVE's, then the time estimate for one calculation cycle (one

time step) is given by:

tSL= B2Ns(Ns- 2)Ts + BNs(TA+ TSI) + B2NsMTs+ BNsToc+ BNsTuD (50)

The first term on the right reflects the fact that NS - 2 straight-line

segments are needed to find the velocity induced at each of the NS

collocation points. The number is NS - 2 , not Ns , because each self-
induction calculation using SIVE's spans two intervals between points. The

second term on the right accounts for these self-induction calculations. The

third term on the right is associated with the NS elements required to find
the velocity at each of the M other points not on the wake. The fourth term
is associated with the calculation of the velocity induced on the collocation

points by all other contributions, such as the bound circulation on the

blades, near wake and far wake model, etc. The final term on the right is the

computer time required to time step and update the collocation point

positions.

A corresponding estimate can be madefor a free wake calculation involving

BCVE's. If the numberof curved elements is NC , the time estimate is:

tCE = B2Nc(Nc- 2)TcE + B2NcP(TcE(S)

+ B2Nc(M- Q)TcE+ B2NcQTcE(S)

- TCE)+ BNc(TA + Tip + TG + TSl)
(51)

+ BNcToc + BNcTuD

where P and Q are the average number of subinterval element calculations

required for points on the wake and elsewhere, respectively. The first two

terms on the right hand side of Eq. (51) account for the time to do BCVE

calculations for the velocity at the N C collocation points in the wake. The

third term accounts for the time to size and locate the elements, and for the

time to do the self-induction calculations. Both of these operations require
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the time TA to find the three point clrcular arc geometry and orientation,
so it is only necessary to do this sequence of operations once (hence the time

appears as TA , not 2TA ). The fourth and fifth terms on the right are the
times required to find the velocity at M other points not on the wake. The

sixth term is the time to calculate the effect of all other velocity
contributions (bound circulation, far wake, etc.) on the free wake. The

seventh term is the computer time required to time step and update the

collocation point positions.

The relative size of these computer time estimates using either straight-

line or curved vortex elements can now be assessed. The numbers P and Q

will be relatively small since on the average only a few other collocation

points will be near enough to any given element to require subinterval

integration. Typically N >> M >> i , namely most of the calculations involve

points in the wake itself, even though a substantial number of calculations

may also be made elsewhere (although not necessarily at every time step).

Equations (50) and (51) show that element geometry and self-induction

calculation times depend linearly on N , and are thus relatively unimportant
to the total time required. The largest terms contain the factors B2N2

and B2NM, with the B2N2 term usually being much larger. Then using

Eqs. (50) and (51) and Table I, the ratio of calculation times for the two

methods using full velocity updating is approximately, for N >> M>> I ,

tCE

tSL
TCE NC TCE 3.3

2 + NS M TSLTSL NS
one time step

full updating

2

(52)

This result shows that the ratio of calculation times for one cycle is

dominated by the ratio of basic element calculation times and the square of

the ratio of the number of elements. Because of the squared effect, it is

only necessary to have half as many curved elements, namely curved elements

twice as large as straight-line elements, to have the curved element computer

time for one free wake calculation cycle be somewhat shorter. Because curved

elements have far better accuracy, even when twice as large, the actual
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numerical simulations presented later clearly demonstrate their superiority.

In fact, when the time to converge an entire free wake calculation is

considered, the case for curved elements is even stronger, as will be

explained shortly.

For this case of full velocity updating notice that the times associated

with establishing the element geometry, TA + Tip + TG , and the time to do

element calculations with subintervals, TCE(S) , do not appear in Eq. (52),
because both are relatively unimportant. The geometry calculations need to be

done only once per free wake calculation cycle, as reflected by their linear

dependence on NC . Thus, they are relatively unimportant compared to the
2 element calculations that must be done. Elementapproximately NC

calculations using subintervals are time consuming but relatively few need to

be done, since P and Q will typically be very muchsmaller than NC and

M . Interestingly, the geometry routines and the subinterval element model

contribute significantly to the excellent accuracy of the curved element

methodology, even though they do not have much effect on the calculation

time. Therefore, the use of these relatively sophisticated procedures seems

well justified.

In practice, free wake computer programs do not necessarily calculate the

effect of every element on every other element at each time step. To reduce

computer time, various optimization schemesare utilized (Refs. 2, 6 and 7).

One approach is to use a partial updating method, first decrlbed in Ref. 2, in
which contributions from parts of the wake distant from a given collocation

point are recalculated infrequently, rather than at every time step. It is

interesting to consider the effect of optimizing the calculation procedure in

this way. The wake must be subdivided into near field and far field (seldom

updated) regions in relation to each collocation point. The size of each near

field region must be based on a proximity criterion determined by physical

considerations. If larger elements are used, then proportionately fewer of
these elements will fall within the near field region. As a result, the

calculation time formulas (Eqs. (50) and (51)) will still contain terms

proportional to N2 , but these terms will be reduced in size by the fraction

of elements which are being updated. However, other parts of the calculation
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which are proportional to N will now be more important (e.g., element

geometry, self-inductlon, collocation point convection, etc.). The resulting

calculation time formulas will contain significant contributions from both
N and N2 terms, although the fraction of elements in the near field must be

very small for the N2 terms not to dominate the wake calculation.

It is difficult to generalize the effect of partial updating on the ratio

of curved element to straight-line element calculation times. Probably the

most important point is that the calculation time is dramatically reduced,

roughly by the fraction of updated elements, regardless of which type of

elements are used. Consideration of various cases using the calculation time

formulas with numerically determined time coefficients suggests that the most

extreme effect of partial updating would be to reduce the power of two in Eq.

(52) to unity. The coefficient 3.3 in this equation now applies as a
conservative estimate. Then, for rough estimation purposes, Eq. (52) can be

generalized as

tCE

tSL one time step

o

(53)

where o = 2 for full updating and

very few elements.

_+ i for partial updating involving

Finally, consider the time required to converge an entire free wake

calculation. From a physical point of view, convergence is obtained when the

incorrect starting solution is washed out of the free wake region and the

solution has relaxed to its final form. This requires the number of blade

motion increments to exceed the number of free wake elements, N , trailed from

a blade. In practice, adequate convergence of velocity at the blades may

require fewer time steps than are needed for full convergence of the entire

free wake. In any event, the required number of free wake calculation cycles

to obtain convergence, NFW C , will be given by
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NFWC - KcN (54)

where Kc is an order one constant that depends on the convergence
criterion. The time to converge a free wake calculation using straight-line
elements is therefore

TSL= KcNstsL (55)

where tSL is the straight-line element computer time for each time step.
Likewise, the convergence time for curved elements is

_CE= KcNstcE (56)

where tCE the curved element computer time for each time step.

Using Eqs. (53) (55) and (56), and referring to the preceding discussion

of optimization by partial updating, the ratio of free wake convergence times

using curved versus straight-line elements is given by

free wake
convergence

NS tSL

c+l

(57)

where I < o < 2 depending on the degree of optimization through partial

updating. Because this convergence time ratio depends on the ratio of the
number of elements raised to a power, there is an incentive to use larger

elements. Using curved elements that are twice as large as straight-line
elements will reduce the calculation time for the free wake part of a computer
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program, with unquestionably better accuracy. If even larger elements can be

used, there will be an even more significant reduction. The trade-off between

time and accuracy is considered in the next subsection.

3.6 Time Versus Accuracy Comparisons

It has been shown that using sufficiently large curved elements can reduce

computer time, and also that larger curved elements are typically more
accurate than smaller stralght-line elements. These results can now be

combined to see what level of accuracy is offered by each method for a fixed

amount of time, and alternatively what amount of time is required for a fixed
level of accuracy. The trade-off between computer time and accuracy is now

considered by meansof numerical simulation.

Figure 18 showsa comparison of calculation time versus numberof elements

for the vortex ring calculations described in subsection 3.3. The calculation

time is that required to find the velocity at a single point above the ring.
For the samenumber of elements the BCVEcalculation takes over three times

longer. There is more than one BCVEcurve because different numbers of

subinternal calculations are required depending on how many ring elements are
very close to the point of calculation, this being a function of distance and
azimuthal location.

Figure 18 can be cross-plotted with Figure 14 to eliminate the number of

elements, N . The results presented in Figure 19 show the maximumerrors in

normal velocity above the vortex ring versus computer time. The high accuracy

of the curved element method is clearly apparent. The time versus accuracy
relationships in Figure 19 are like those of a prescribed wake calculation, or

one time step of an optimized free wake calculation, since the calculation

time depends linearly on the numberof elements.

To slmulate a free wake calculation cycle, calculations were madeon three

turns of a helix, as shownin Figure 20. This configuration can be thought of

as a crude model of a rotor wake in hover. The computer time shownon the top
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horizontal scale was based on finding the velocity at every collocation point

on the helix plus at ten other stations along a blade positioned at the top of

the helix. This calculation corresponds to full velocity updating in a free

wake time step. The calculated error is that incurred at two representative

points. Point A is at the location of an opposing blade, half the helix pitch

above the top turn. Point B is in the middle of the filament, on the helix

itself. The straight-llne and curved element end point errors are compared.

This places the straight-line elements in the most favorable light possible

since they are most accurate at end points. Because Figure 20 represents a

free wake calculation cycle, the computer time is roughly proportional to the

square of the number of elements, and thus the use of fewer elements

dramatically reduces this time. The curved element method shows dramatic

superiority in this comparison, both in terms of accuracy and rate of

convergence. The errors at point B are lower than at point A because both

methods use the same SIVE to evaluate the self-inductlon at B. If the same

calculation were made to simulate partial velocity updating, the results would

be somewhat less dramatic, but the superiority of curved elements would still

be clearly evident.

Figure 21 shows a similar calculation only at point B to indicate the

effect of azimuthal location of the collocation points. As the number of

elements per turn is varied continuously, point B is alternatively subjected

to errors ranging between end point and midpoint types. The cross-hatched

region in Figure 20 indicates the range of variation of these errors. The

errors are induced primarily by the elements above and below since point B

itself uses a SIVE in both cases. For the same reasons as before, curved

vortex elements are seen to perform dramatically better than straight-line

elements. Increasing the helix pitch would significantly reduce the errors.

However, the tight helix pitch shown is realistic for a hovering rotor or for

simulating the close interaction between filaments in forward flight.

It should again be mentioned that the errors shown are for one particular

velocity component. The above results should not be interpreted to mean that

all velocity calculations associated with this configuration are similarly in

error if straight-line elements are used. There are locations where there
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would be less difference in accuracy between element types (for instance at

the inboard stations on the blade), but the curved element approach would

still be more efficient. Nevertheless, the errors shown are of practical

concern in free wake calculations, since the answer depends on a delicate

balance between closely interacting vortex filaments. Furthermore, these

errors were shown to be of the same order as the self-induction effect and

must therefore be considered important. By using curved vortex elements, this

accuracy problem can be avoided while still improving efficiency.
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4. FREEWAKEANALYSIS

4.1 Forward Flight Free Wake

The curved element method described earlier was implemented into a forward

flight free wake analysis. This analysis was developed for two reasons. The
first was to demonstrate the use of the curved element approach and to study

its behavior. The second reason was to provide the basis for a free wake

subroutine to be implemented in the Boeing B-65 rotor alrloads computer

program, which previously had a prescribed wake. The implementation of the
free wake analysis in the Boeing program is described in Section 5 of this

report.

For the purpose of demonstration, the forward flight model was kept

relatively simple, with the emphasis on determining the tip vortex motion from

a single or multl-bladed rotor. The demonstration program has no near wake or
inboard wake models to account for the shedding of other vortices. The

circulation can be allowed to vary as a function of blade azimuthal location,

and the rotor blade can also undergo specified flapping motions.

Nevertheless, there is no consideration of rotor trim or of blade dynamic
motions in the calculations presented later in this section. However, these

omissions in the demonstration program are corrected by its implementation

into the Boeing B-65 program as described later. The purpose of the

demonstration program is to examine the behavior of curved elements in a tip
vortex free wake that is sufficiently simple that other competing effects are

not present. Essentially, this model contains only the bound circulation on

the blades, several turns of free wake tip vortex, and a special far wake
model which is the subject of the next subsection.

The wake induced velocity is determined by calculating the effect of each

BCVEat all the free wake collocation points plus all other points of interest

(e.g., on the blade). The locations of all these points are first transformed
from reference coordinates to the local coordinate system of this BCVE, as

shown in Figure 22. All the velocity calculations associated with the
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particular BCVE are then performed, transformed back to reference coordinates,

and appropriately stored. The process is repeated for every other element.

The velocity induced at any given point is not fully determined until the

contributions of all the elements have been found. This particular

calculation sequence appears to be the fastest approach computationally.

The free wake analysis is then implemented in the traditional time

stepping manner. In each time step, the blade moves through an angular

increment A_ and lays down an additional vortex element between the previous

collocation point (which was on the blade) and the present blade location. At

the same time, the last element in the free wake is discarded to keep the

total number of free wake elements constant. This process is illustrated in

Figure 23. The displacements of all the collocation points in the wake are

calculated from the velocity vectors induced at these points and the time step

associated with the change in blade position. The motion of the collocation

points is followed in a purely Lagrangian sense in the reference Cartesian

system moving with the rotor, shown in Figure 22. The velocity at the free

wake collocation points is produced by the free stream, the bound vorticity on

the blades, the free wake itself (BCVE and SIVE elements), and by the far

wake.

The time evolution is calculated using a predictor-corrector scheme 20 to

ensure higher order accuracy as well as stability. Accuracy is particularly

important since using large elements means rather large time steps and

correspondingly large rotations of the rotor blade tips. The stability of the

method also benefits greatly from the fact that the last free wake element is

discarded at each time step. The wake behavior is largely dominated by the

convective effects of blade rotation and forward flight. Wake distortions and

errors in the solution are effectively swept down the wake. Repeatedly

discarding the last element provides a way to remove these disturbances from

the free wake; otherwise errors might accumulate at the junction between the

free and the far wake. The far wake is recalculated at each time step so that

it always connects smoothly with the remaining free wake, again see Figure 23.
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The idea that disturbances are swept down the wake (when viewed in the

reference frame moving with the rotor) has been confirmed by visual examina-

tion of the step-by-step evolution of solutions. Furthermore, solutions do

not fully converge until the numberof rotor revolutions exceeds the numberof

free wake turns, i.e., the convergence time exceeds the time for disturbances

to convect out of the free wake region. Convergenceis said to occur when the

positions of the collocation points repeat from turn to turn, to within some
specified accuracy. As expected, points near the blade settle down first.

Velocities induced at the blade may be quite repeatable even before the

downstream end of the free wake converges. Although systematic studies of

convergence have not been performed, the curved element method seems to behave

extremely well in this regard. The collocation point locations converge

rapidly to nearly repeatable values after a few blade turns. Generally, it is
not difficult to decide when the solution is effectively converged. It is

also worth noting that the curved element method seems to be quite robust,

with converged solutions being obtained relatively quickly, even from a poorly

chosen initial wake shape.

In the current free wake analysis none of the possible short cuts to

reduce computer time were used. The effect of every point on every other

point is recalculated without further approximation at every time step, i.e.,
full velocity updating is used. Unlike some other free wake analyses, no

distinction is madebetween near and distant points in terms of whether or not

to update their effect at every time step. Also, the tip vortex from every

blade is treated as a separate entity. This unoptlmlzed treatment reflects a

conservative approach to the first implementation of a new method. In any

event, at least in this basic analysis, the free wake calculation procedure is

sufficiently efficient that further optimization to reduce computer time has

not been necessary. The point is not that such approximations are invalid,
but rather that the free wake computer program could be made even more

efficient by their implementation. In fact, the use of curved elements

considerably expands the opportunities for optimization. For example, the

unique capability to use very large element sizes in certain parts of the wake

to improve efficiency has yet to be explored.
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4.2 Forward Flight Far Wake

The forward flight analysis necessarily involves a finite numberof turns

of free wake. For several reasons it is necessary to continue the wake with a

far wake* model beyond the free wake region. The velocity induced by the far

wake region has a significant effect on the evolution of the free wake, as

well as somedirect effect on the velocity field at the rotor blades. If the

free wake were simply terminated, the flow field would be kinematically

incorrect and the downstreamend of the free wake would not converge. It is,

therefore, important to develop an accurate far wake model which does not

adversely affect the free wake convergence.

As each successive turn of rotor wake is shed from the blade and passes

downstream, its subsequent motion can be thought of as a combination of
overall convection and local distortion. The dominant convection effects are

the free stream velocity and the net downwashfrom the remainder of the wake

and the rotor itself. The distortion occurs largely as the result of the
nonuniform flow induced by the vortex on itself, and is primarily associated

with the collapse and tendency to "roll-up" of the wake tube, which rapidly

takes on the appearance of a vortex pair downstream of the rotor. This

behavior is apparent in the numerical simulations discussed later. Once this

rapid initial distortion has occurred, typically within the first couple of

wake turns behind the blades, the subsequent distortions appear to be confined

primarily to the details of the roll-up region, where the concentration of

vorticity is highest.

The far wake model is based on the idea that the best estimate of the

shape of a far wake turn is the shape of the last free wake turn. One blade

revolution later, the vortex represented by the last free wake turn would then

occupy the position of the first far wake turn. This assumption corresponds
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to freezing the shape after the last free wake turn. The effect of subsequent

downstreamdistortion is, therefore, not included, and only convection in an

average sense is taken into account. This approximate shape is best for the

first few far wake turns, since there has been relatively little time for

subsequent distortion. Neglecting this distortion in the far wake turns that
are farther downstreammakes little difference since the influence of their

detailed shape is less crucial because they are farther away.

Given this model for the far wake, the problems to be resolved are the

determination of the direction in which the wake is convected, and the

development of an efficient method to sum the infinite number of repeated

turns of far wake. The meanconvection direction is determined by comparing

the positions of the last and next to the last turns of free wake. The change

in position of each set of corresponding points on these two turns is
computed. These position differences between pairs of points, originally

generated at the same blade azimuthal location, defines a displacement

vector. A running average of all these displacement vectors, generated while

stepping the blade through the previous full turn, is computed to determine an

average displacement vector. This average displacement vector, r , is takens
to represent the average displacement per blade revolution of a wake turn due
to overall convection. It is used to orient the successive far wake turns in

space. The purpose of the running average over a cycle is to filter out the

distortion effects that are superimposedon this meanconvection.

The far wake configuration is illustrated in Figure 24. The far wake can

be thought of as being composed of a set of seml-infinite rows of elements

running in the direction of r , one of which is shown in the figure. It is
s

possible to sum the contributions of each row in an efficient manner by using

the discrete approximation for the Biot-Savart law.* Consider one element

In Section 3.2 this approximation was shown to work well for straight-line

segments, and it can also be shown to work for curved elements at a

distance if the correct equivalent strength is used.
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from the seml-lnflnite row, as shown in detail in Figure 24. Provided the

distance to the point of evaluation is considerably greater than the element

length, the following approximation is reasonably accurate,

+ + + +

÷ F f r (s)xds r x£
v r v s (58)

qelement = - 4--_ J + 3 _ 47 + 3
element Irv(S)I Irv

+

where r is interpreted as the distance from the center of the element in
V +

the final expression on the right. The vector £s describes the element

orientation and effective length. This simplified form can now be used to sdm

all the contributions from the element row, namely

® ÷ + (n-l);]xl+ r _ [rv s s
qrow _ - 4-_ / + + 3

n=l Irv + (n-l)rs

(59)

÷

where r
V

evaluation.

is the distance from the first element to the point of

After some manipulation the following equivalent form is obtained

+ + {Ir

÷ = F r x£v s l-

qrow 4_ '+v 3

I;13 I n - 2

n=3 l_v + (n-l)_s 13

r

47

(rv + rs)X£ s

+ r 13 1+ ;v+ ;sl3 n_!+ + + 3
l_v s nffi3 Irv + (n-l)rsl

(60)

Now, the velocity contributions from the first and second elements in the row

are

÷

÷ r _ xl + F (_v + rs)X%
v s and s (61)

i÷ { I+ + 3r vr v
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In practice, the infinite summations in Eq. (60) can be replaced by integrals

for n > m , where m is sufficiently large that the integral approximation

holds. Thus, the velocity contribution of a far wake row is

I Imzi-> "> + 3

qrow = ql 1 - r v
n- 2

I_v + (n_l)_ s 3 m /2Irv + (n-1)rsl3

(62)

+ r 13 n- i (n- l)dn 3+ q2 I + Irv s + + 3 + + --

n=3 Irv + (n-l)r sl m-I/2 Irv + (n-l)r s

The above result shows that the velocity for the entire row can be found
+ + + +

in terms of ql ' q2 ' rv and rs " In practice, the effect of two turns
+ +

of far wake is found using BCVE's to determine ql and q2 for each row of

elements. Hence the approximation of Eq. (58) is actually not invoked until

the third far wake turn. The effect of an Infinite number of far wake turns
+ +

is then obtained by multiplying the ql and q2 for each row by the factors

in brackets above. The approach has proved to be very efficient in practice.

The far wake model has been successfully implemented into the forward

flight computer program. A smooth, stable transition between the end of the

free wake and the beginning of the far wake has been achieved. This is

especially remarkable because the far wake and free wake typically overlap and

may be considerably intertwined, particularly at lower advance ratios. The

success of this approach indicates that the physical ideas underlying the far

wake modelling are essentially correct.

Since the far wake structure is based on free wake information, the far

wake shape evolves along with the free wake solution. Note that there is a

different far wake shape at each time step in the solution. The far wake

configuration also adjusts automatically to the rotor flight condition. An

indication of the success of the method is that in the forward flight wake

shapes presented later it is quite difficult to tell where the free wake ends

and the far wake begins.
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4.3 Close Encounters BetweenVortices

In the evolution of the free wake solution, large distortions occur in the

tip vortex filament. As will be seen, these distortions are particularly

strong along the sides of the wake which tend to roll-up forming a pattern

that looks like a trailing vortex pair downstream. As a result, turns of the

vortex wake that were not initially close together may experience close

encounters. The frequent occurrence of these close encounters provides a

strong justification for the curved vortex element method which retains its

accuracy at points close to the filament. In the rapidly distorting and

stretching roll-up regions, the local radii of curvature are often much
smaller than the rotor radius, and initially small elements may stretch to

encompasslarge arc angles. The evidence presented previously suggests that

the use of straight-line elements in this region would introduce errors unless

the elements were muchsmaller than normally used.

Another problem associated with extremely close encounters is of practical

significance. When a collocation point falls very near another vortex

element, very large velocities can be induced. This behavior is not only

physically incorrect, but also causes problems in the numerical method since

the particular point may experience extremely large displacements in a single

time step. It is clearly necessary to introduce the effect of the vortex
core.

The tip vortex is formed by the vortex sheet shed from the blade tip

region beyond the point of maximumlift. The initially flat sheet rolls-up

into a spiral structure. Viscous effects dominate the high velocity center

portion of this region, forming a viscous vortex core in solid body

rotation. Outside the viscous core is the vorticity from the rest of the

spiral sheet. An analytical prediction of the circulation distribution
outside the viscous core is given by the Betz roll-up model.21'22 The Betz

core structure is determined by assuming conservation of angular momentum

during the sheet roll-up process. The swirl velocity distribution depends on

the initial strength distribution of the vortex sheet, and thus, on the load

distribution at the tip of the blade. In most cases, the swirl velocity
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distribution in the Betz core must be calculated numerically. Fortunately,

for the important case of elliptical loading a simple curve fit approximates
23the numerical solution with considerable accuracy.

An alternative approach is to use an empirically determined vortex core
structure. A recent experimental study24 has shownthat a wide range of cases

can be represented by a three part empirical core model. The three parts

consist of a solid body rotation region at the center, an intermediate

turbulent mixing region, and an outer transition region associated with the

remaining spiral vortex sheet. Reference 8 reviews someadditional approaches
to vortex core structure.

In general, the swirl velocity distribution in a vortex core is given by

F(r) (63)
q = 2_r

where F(r) is the circulation as a function of radius.

vorticity core

For a constant

r 2
r(r) = rv (_-) r < av (64)

v

where av is the core radius and Fv is the circulation at the core

boundary. This circulation distribution is sometimes used for convenience to

describe the entire vortex core, and indeed it provides a good approximation

to the swirl velocity distribution throughout much of the viscous core

region. 24

To illustrate the construction of a more realistic composite vortex core,

the Betz roll-up model will be used. The approximate form for the Betz core

produced by an elliptical load distribution 23 is

84



r _ _B 1/2rB(r) = r[2 aq ( )2] r ¢ aB (65)

where F is the total circulation, and aB is the Betz core radius. If the

distance between the point of maximum blade load and the tip is bt , then it

w

can be shown that aB = _ bt for elliptic loading. The load distribution

on the tip of a conventional helicopter blade can resemble an elliptical

distribution. 25 A composite vortex core can be constructed with an inner

viscous core modelled as a constant vortlclty region surrounded by a Betz

core. For this composite core,

r(r) =

v
r(ar-----) 2 [2 L- (av] 2 I/2

I aB "aB" ]

v

r r 2 1/2

F[2 -_B - (_B) ]

F

0 _r _a
v

a < r _ aB (66)v

r>a B

where aB = ac , the vortex core boundary. This result combined with Eq. (63)

gives a distribution of swirl velocity as shown in Figure 25. The constant

av must be specified from experimental data and aB depends on the blade

load distribution; typically aB >> av . An alternative composite core is

the three region empirical model of Ref. 24. Interestingly, both this

empirical core and the present model indicate that ac >> av . In the

demonstration calculations presented later in this section, a simple constant

vorticity core was assumed because detailed blade loading calculation were not

made.

The above approach can be used as a basis to adjust the velocity induced

at a collocation point experiencing a close encounter with a nonadjacent

element on the vortex. If the distance between the element and the point is

less than the core size, then the core swirl velocity distribution can be used



It 't /Point Vortex

_ /V=F/ZTrr,

l ,_ _ .Betz Distributed

J !l\ ',/Vort,c,t, Mo'e'
Swirl / t l V"_

Velocity/ i I "w_.,,

j I Il t_-Viscous Region I=

--, Betz Radius---i-_ I
I

av aB
v

Radius, r

Figure 25. Composite core swirl velocity distribution.

86



to adjust the induced velocity, as described shortly. However, it should be

noted that any approach of this type is necessarily approximate. In

actuality, the occurrence of overlapping vortex cores may lead to physical

phenomena beyond the scope of current free wake analyses. For instance, the

merging or pairing of vortices is now a reasonably well known process in

certain vortical flows. It is entirely possible that such effects take place

commonly in the roll-up regions on the sides of the wake. The intertwined

vortices on the sides may well merge to form a trailing vortex pair. In the

present analysis, cores may pass through each other but cannot merge.

However, in the absence of these complex viscous effects, it is hoped that the

analysis still preserves the local centroids of motion to some reasonable

degree, and the average effects of merging vortices (if this merging actually

does occur) is adequately represented, at least as seen by other parts of the

wake.

The correction to the velocity at a collocation point induced by a nearby

vortex element is now considered. Because this correction is necessarily an

approximation in the absence of real viscous interaction between the cores, it

is reasonable to develop the correction itself in an approximate manner.

Figure 26 shows a collocation point located very close to a BCVE. The

approach involves first finding the minimum distance rm from the filament to

the collocation point. Then the ratio of the vortex core swirl velocity to

the point vortex swirl velocity is used as a factor to reduce the velocity

originally calculated at the collocation point. This type of correction can

reasonably be applied because the local vortex flow field appears very nearly

two-dimensional within the vortex core, even when the filament is curved.

The maximum velocity in the potential flow region around a curved element

occurs at the edge of the vortex core. This core edge velocity is

approximately

qe _ 2_a - (67)

c _(x + _)2 + a2 _(x _)2 + am
c c
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where ac is the core radius, x is the collocation point location in the

local coordinate system of the nearby element, and A is one-half the

distance between the end points of the element. The function of x in

brackets has been introduced because the element does not induce the full two-

dimensional value of swirl velocity when the collocation point is near an end

of the element, and because the element is of finite length. For instance,

when the collocation point is next to the end of the element, the induced

velocity is about half the two-dlmensional value. The function in brackets

actually comes from the straight-line element formula. The analytical work on

accuracy discussed earlier can be interpreted to show that a straight-line

element works reasonably well at close distances, if It _s located at the

proper radial distance from the polnt of evaluation. This function of x is

convenient, and certainly accurate enough for the present purpose. This is

not equivalent to making straight-line element type errors since the proper

radial location (radial distance equal to core radius) is used.

The procedure to correct for close encounters is as follows. The

essential features are illustrated in Figure 26. It is cumbersome to actually

determine the minimum geometric distance, rm , from a collocation point to a

curved element (note that the minimum distance is not the distance between the

nearest collocation points). Instead, the minimum distance is deduced from

the calculated velocity. The velocity induced at each collocation point by a

given BCVE is calculated. If the magnitude of one of these velocities,

called qm ' exceeds the core edge velocity, qe ' from Eq. (67), then the

corresponding collocation point is within the core region of the BCVE and the

correction procedure is used. The velocity qm very near a BCVE can be

estimated as

F{x+£ _x-£ }_
+ £ 2 + a x - £j2 + a

c c

(68)

where rm is the minimum radial distance from the BCVE to the collocation

point. As a simplification, the core radius ac , rather than rm , is used

in the function in brackets. The difference is unimportant to within the
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accuracy of the approach. Using Eqs. (67) and (68) to solve for r m gives

qe

r = a -- (69)
m c qm

This radius can now be used in Eqs. (66) and (63) to determine the actual core

swirl velocity, qc " A correction factor for close encounters can now be

defined as

qc

Vc = qm
(70)

This correction factor is applied to reduce the velocity vector qm

calculated originally. The close encounter correction is required whenever a

free wake collocation point falls too near a curved element in either the free

wake or the far wake.

4.4 Sample Calculations

This subsection describes various sample calculations which illustrate the

behavior of forward flight free wake solutions using the curved vortex element

method. The results shown are for a simplified demonstration model having

only a tip vortex free wake, a far wake, and constant bound circulation on the

blades. This simplified model focuses on the behavior of the free tip vortex

which is the primary feature of interest. In these calculations, the rotor

plane is horizontal and aligned with the free stream flow. There is no

dynamic blade motion and no consideration of flight trim for the rotor. This

basic free wake demonstration program was developed to run on an IBM personal

computer.

Figure 27a,b,c,d shows the evolution of a solution for a one-bladed rotor

at advance ratio _ = .075 with five turns of free wake with elements
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generated at every 30 ° of blade rotation. The results are shown at every two

complete blade turns. The solution is nearly converged after six blade turns

since there has been time to wash the incorrect initial shape out of the free

wake. The solution is started from a skewed cylindrical form, from which

significant distortions rapidly occur. Note that the vertical scale is

expanded by a factor of 3.0 to show the structure of vertical displacements

clearly. This scale expansion and the action of the plotting routine

sometimes make the changes in wake shape from polnt-to-point appear abrupt,

which is actually not the case with the curved element method.

The wake evolution seen in this sequence of figures illustrates an

important aspect of this free wake method, which is its robust, stable nature

in converging to a solution. Even from a poor starting point, the scheme

evolves rapidly towards the solution. There seems to be a distinct absence of

numerical instability problems with this method. This may be due in part to

the use of curved elements, and to the interpolated point element connection

scheme which guarantees a degree of smoothness in fitting the elements between

the collocation points. The accuracy of these methods may help prevent

spurious behavior in the evolving wake.

As Figure 27d shows, the primary characteristic of the wake distortion is

the roll-up tendency of the overlapping vortex turns on the sides of the

wake. In the present calculation this effect carries the tip vortex up

through the rotor disk plane on the advancing and retreating sides. As will

be seen, this interaction between the vortex turns along the sides of the wake

produces a downstream flow field that looks very much like a trailing vortex

pair. The concentration of vorticity along the sides tends to wash the center

of the wake downward, producing a characteristic pattern in the side view.

The turns which face forward, generated around _ = 180 ° become the forward

facing loops seen in the side view at the lowest part of the wake. The

turns which face rearward, generated around _ = 0 ° , form the rearward

facing loops near, or just above, the bottom of the wake. Farther back in the

wake the vertical separation between the forward and rearward loops is seen

to diminish. Essentially, the tube-like wake of the starting solution

collapses in the middle due to roll-up along the side edges. This behavior is
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most clearly seen at lower advance ratio, and for larger numbers of rotor

blades, since in both cases there are more overlapping vortices along the
sides of the wake.

The corresponding case of a one-bladed rotor at advance ratio W= 0.15 is

shown in Figure 28. In this calculation there were 2-1/2 turns of free wake

with elements generated at every 22.5 ° of blade rotation. Note that the

vertical scale expansion is about 5.0 in this figure, so that in actuality the

wake is flatter and does not descend as rapidly as in the previous case.

Doubling the advance ratio halves the density of vortices in the wake. The

top view shows much less distortion of the vortices along the sides of the

wake. Someroll-up tendency is still evident in the front and side views,

which show upward displacement and distortion of the sides of the wake. There

are discernible differences in the distortions seen on the advancing and

retreating sides. These differences are associated with the side-to-slde

asymmetry of the wake as seen in the top view. This asymmetry becomesmore

pronounced as advance ratio increases. The downward displacement of the

center of the wake also shows a degree of asymmetry. The characteristic

forward and backward facing loops mentioned earlier are still clearly evident.

In the results just shown, as well as those to be presented, the
successful treatment of the far wake is to be noted. No irregularity at the
transition between the free and far wake can be seen and in fact the

transition point is hard to identify without carefully counting the free wake

turns. The numerical output shows no problem with convergence in this

transition region. Visually, the generated far wake shape appears quite

consistent with the form of the free wake. Because of the overlapping nature

of the wake, there is significant intermingling between free wake and far wake
turns, but this does not have an adverse effect on free wake convergence. In

all respects, the method of treating the far wake is Judged to be quite
successful.

Next consider a set of results for a two-bladed rotor. Figure 29 shows

the solution at p - .08 for three turns of free wake from each blade. Note

that the vertical scale is expanded by a factor of 2.25. The wake elements
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Figure 29. Solution for a two-bladed rotor with 3 turns of free wake at

p = .08 - after five blade revolutions.
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are generated at every 22.5° of blade rotation. It is immediately apparent

that the addition of a second tip vortex enhances the roll-up effect. The top

view, Figure 29a, shows a larger, more entangled region of trailing vortices

along the sides, as compared to the previous figures. Although the initial

element size is reasonably small, considerable stretching may occur in the
roll-up region along with relatively small radii of curvature. It is often

possible to find elements in or near this region that have their arc angle,

8o , more than doubled by this distortion and stretching. The concentrations

of vortlclty on the sides again wash the center of the wake downwardproducing
the characteristic pattern of hooks or loops at the bottom of the wake as seen
from the side.

Figures 29b and 29c show top and side views of the same calculation with

one tip vortex deleted for clarity. The shape of each individual vortex

actually resembles the one-blade rotor results presented earlier. The

structure of the loops near the bottom of the wake is now seen more clearly in
the side views. The roll-up type distortion along the sides of the wake is

particularly clear in the top views, where the distortion of the overlapping
turns gives the appearance of a twisted structure.

Figure 30 shows the corresponding calculation for a two-bladed rotor at

advance ratio _ = .16 • The roll-up tendency along the sides of the wake is

again clearly evident in the top views. Because the higher advance ratio has

reduced the degree of overlap of the vortex turns, the roll-up is less

pronounced than in the previous figure. The side view shows the roll-up

distortions of the sides of the wake and the downward displacement of the
forward and rearward facing loops in the center of the wake. In this

calculation some secondary distortions caused by interactions between the
loops are evident.

Next consider the structure of the crossflow velocity field in the rotor

wake. Rotor wake surveys conducted in Ref. 26 showedthe rapid formation of a

vortex pair flow pattern in crossflow planes downstreamof the rotor. This

structure was evident immediately behind the rotor, even at fairly low advance
ratio. The actual wake descends more slowly than would the skewed tubular
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wake of momentum theory. Figures 31, 32 and 33 show the instantaneous

crossflow velocity field at two downstream stations located at x = - I.IR r

and x = -2.2R r behind a two-bladed rotor. These three figures present

results for _ = .08 , .16 and 0.4 , respectively. All three cases involve

three turns of free wake, with elements generated at every 22.5 ° increment of

blade rotation. There is a definite resemblance between these crossflow

results and those obtained experimentally. At the lower advance ratios, the

formation of the vortex pair structure immediately behind the rotor is clearly

evident. However, at _ = 0.4 the pattern is less clear because there is

much less overlap and interaction between the trailing vortices. In all cases

the appearance of a trailing vortex pair flow pattern would have been even

stronger if the time averaged, rather than instantaneous, crossflow velocities

had been computed. Nevertheless, these results support the impression gained

from earlier figures that the distorted overlapping sides of the vortex wake

are a dominant feature of the flow field.

Finally, the important issue of the effect of element size on the

calculated results is addressed. Three sets of calculations for a one-bladed

rotor at advance ratio of _ = 0.16 with three turns of free wake are

presented. Figures 33a,b,c,d show the downwash velocities induced along the

blade at four different azimuthal locations, _ = 0 ° , 90 ° , 180 ° and 270 ° .

In each case a comparison is made between the use of elements generated by

45 °, 30 ° and 15 ° increments of blade motion. In this simplified demonstration

analysis, only the tip vortex can contribute to the downwash velocity field.

For clarity, a top view of the rotor blade and tip vortex position is shown

for each azimuthal location. The effect of increasing the element size is

surprisingly small, although the most deviation is seen in the 45 ° case, where

the large elements produce some smoothing of the wake shape. In an analysis

containing additional effects that contribute to the downwash velocity, e.g.,

near and inboard wake models, the differences would probably be even less

pronounced. Note that the large elements require significantly less computer

time. These results suggests that relatively large curved elements can indeed

be used to improve efficiency without sacrificing accuracy. However, further

systematic study is certainly needed to see if similar results can be obtained

for multl-bladed rotors and at lower advance ratios, where local wake

distortion is more severe.
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5. IMPLEMENTATION OF THE FREE WAKE MODEL

INTO THE BOEING VERTOL B-65 CODE

5.1 Summary of the B-65 Code and its Implementation

The results given in the previous section of this report illustrate the

capability of the basic free wake analysis using curved elements. A further,

significant test of the free wake model is its implementation into a large

mainframe rotor alrloads computer program. For this exercise a copy of a

version of Boeing Vertol's B-65 code was made available to Continuum Dynamics,

Inc. for use on the mainframe IBM machine at Princeton University. In this

section of the report the implementation of the free wake model into the B-65

code, and some predictions using the free wake model, are discussed.

The Boeing Vertol B-65 code solves for the alrloads along the rotor blades

using a detailed blade dynamics analysis. An initial solution for the loading

is obtained assuming uniform induced inflow through the rotor plane based on

momentum theory. The blade dynamic motions and equilibrium trim conditions

are first determined iteratlvely. Then, a prescribed wake of stralght-line

segments generated at every 15 ° increment of blade rotation is trailed behind

the rotor blades. The effect of these stralght-llne segments on the rotor

plane is calculated using the Biot-Savart law. The aerodynamic model also

includes a near wake and mld-wake associated with the lifting llne analysis of

the blade load distribution. Finally, the alrloads and trim conditions are

recomputed with the revised rotor plane velocities. The free wake curved

vortex element model replaces the prescribed wake stralght-llne segment

analysis.

It should be apparent that free wake and prescribed wake analyses are

rather different in approach, and particularly in implementation. They will

differ significantly in the computer time required for solution, quite apart

from any question of relative accuracy. It is also important to realize that

very little of the Boeing Vertol code deals with the prescribed wake. This is

actually an advantage, because it implies that only a small portion of B-65
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needs to be altered. The wake itself is broken into three parts by B-65: a

near wake from 0 to 15 degrees behind the blades, represented as horseshoe

vortices; a middle wake from 15 to 45 degrees behind the blades, represented

by a vortex lattice; and a far wake from 45 degrees extending back a couple of
turns, represented by root and tip vortex filaments. It is the far wake

portion of the prescribed wake tip vortex that has been replaced by the free

wake model.

To effect this substitution in as general a way as possible, additional
code was written to interface B-65 to the free wake subroutines. The far wake

subroutine was modified to make these additional subroutine calls, and a

dormant variable was selected to trigger the various options provided in the

modified code:

1. a prescribed wake solution with straight-line segments
(the original technique),

2. a prescribed wake solution with curved vortex elements, and

3. a free wake solution with curved vortex elements.

The free wake solution was initialized with the prescribed wake developed

by B-65. The free wake subroutines were run for the number of blade
rotations equal to the numberof prescribed wake turns input to B-65 for the

prescribed wake analysis (an existing input). Computer timings were taken and
critical parameters were compared. In all cases the input parameters

correspond to the full-scale H-34 four-bladed rotor test conducted at
NASA/Amesin the 40 x 80 wind tunnel, 27 at an advance ratio of 0.39 •

5.2 A Comparisonof Numerical Results

Full implementation of all of the features in B-65 for the free wake was

not included. A downwashvelocity limiting algorithm was bypassed in the

present study, and the effect of the root vortex was neglected. It was felt

that the present root vortex treatment was a formulation chosen to improve the
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prescribed wake prediction, and that its inclusion in the free wake analysis

would require further treatment as a separate issue.

Additionally, the free wake analysis was never attempted with arcs of

15 degrees. The computer time required would be considerable in the current

scheme with full velocity updating, and would reduce the practical

applicability of the curved element free wake analysis in B-65. Rather, a

velocity interpolation scheme was added to the free wake code so that

solutions for 30 and 45 degree elements could be used to determine the blade

velocities every 15 degrees• This approach was necessary because the 15

degree blade motion increments are rigidly set within the B-65 code.

Four cases were analyzed with the modified B-65 code:

i •

i

D

4.

B-65 was solved in its prescribed wake form with the neglect of the

root vortices and the velocity test routine.

B-65 was solved using the prescribed wake spatial positions, but

instead of evaluating velocities using straight-line segments, curved

vortex elements were invoked.

B-65 was solved using two turns of free wake with 45 degree elements.

B-65 was solved using two turns of free wake with 30 degree elements.

Table 2 compares the values of several key parameters in B-65, all

normalized by their values for case I. Because the calculations were made at

a fairly high advance ratio, the differences between the cases should be

relatively small. Nevertheless, as can be seen from the table, changes can be

observed in the horsepower, lift-to-drag ratio, and in some of the flapping

coefficients. Interestingly, a comparison of cases I and 2, which use the

same prescribed wake geometry and equal element sizes, shows some noticable

differences attributable to the difference between element velocity fields.

The apparent differences between cases 3 and 4 are probably attributable to

the velocity interpolation scheme as much as to element size effects.
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It is of interest to compare the computer time required for the different

cases. Here it must be reiterated that a free wake time cannot be fairly

compared to a prescribed wake time. Furthermore, the current free wake

analysis is not fully optimized, as explained in the previous sections. The

total run time for the development of the free wake solution with full

velocity updating, and fully independent vortices from each blade, is

approximately proportional to the square of the number of blades, the cube of

the number of turns of free wake, and the cube of the number of segments in

360 degrees. In other words:

Total time _ (number of blades) 2 x

(number of turns) 3 x

(number of segments per turn) 3

To illustrate the consequence of this equation, the expected time difference

between cases 3 and 4 may be checked. Since in the example selected there are

four blades and two rotor turns, the significant variable is the number of

segments. For the 45 degree case this number is 8, while for the 30 degree

case it is 12. Thus, computer time should scale as (12/8) 3 or 3.38, a

conservative estimate of the actual time difference of 10.4/4.2, or 2.48. As

discussed in Section 3, the use of optimization methods such as partial

updating could dramatically reduce the free wake computer time.

It is expected that calculations at lower advance ratios would show more

significant differences between straight-line results and curved vortex

elements.

5.3 Free Wake Results

The B-65 results can also give an indication of the structure of the

trailed wake by plotting the free wake points. Several of these plots are

shown in Figures 35, 36 and 37.
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Figure 35. Three views of the initial prescribed wake for the H-34 test case.

Figure 36. l_e free wake solution after two blade revolutions using elements
generated at 30° blade rotation increments.
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Figure 37. The free wake solution after two blade revolutions using

elements generated at 45 ° blade rotation increments.
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Figure 35 shows three views of the initial prescribed wake as defined by

the B-65 code for the H-34 conditions provided by Boeing Vertol. Blade

flapping and first-guess airloads are used to trail this wake behind and below
the rotor disk and initialize the circulation pattern at every point in the
wake.

Figure 36 illustrates the wake profile after two blade revolutions for a

free wake solution using 30 degree elements. It is interesting to note that

the top view has remained essentially unchanged, a feature also present to
some degree for all the figures at higher advance ratios illustrated

previously in this report. An important change occurs in the side views,
where the center of the wake is seen to be washeddownward. An examination of

the front view also illustrates this feature and shows a roll-up tendency of

the overlapping vortices on the advancing side. These changes can be noted by

comparison to the initial conditions of Figure 35. Figure 37 illustrates a
similar result for a free wake solution using 45 degree elements. At the high

advance ratios used here, the difference between 30 and 45 degree elements is

not large. It is only at much lower advance ratios that differences might

becomemore apparent. However, results presented earlier showed relatively
little difference between 45, 30 and 15 degree element sizes at _ = .16 •
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6. CONCLUSIONS

This report has described the development, performance and implementation

of a curved vortex element for rotor free wake calculations. The Basic Curved

Vortex Element (BCVE) is derived from an approximate, but accurate integration

of the Biot-Savart law for a parabolic arc. This element is intended for use

in place of straight-line vortex elements, which have been used in previous

free wake analyses. The results presented in this report justify the use of

curved elements from the standpoint of improved accuracy and efficiency.

A curved element requires a special scheme to establish its spatial

orientation and curvature between each set of collocation points along the

wake. Three such schemes were considered, and an interpolated point method

was chosen for the present work. This method utilizes the local information

from each set of four adjacent collocation points to configure each element in

space. This method contributes significantly to the overall accuracy of the

scheme.

The relative accuracy of curved and straight-line elements was studied

numerically and analytically. The purpose of this study was to assess the

importance of straight-line element errors and to see if fewer, larger curved

elements could be used instead. Scaling laws and relatively simple formulas

for straight-line element errors on filaments of arbitrary shape were

developed as part of this effort.

An important result of the accuracy analysis is that straight-line

elements make velocity errors of order F/4zR , where R is the local radius

of curvature, when the point of evaluation is within one element length of the

filament. This error is of the same order as the self-induction effect which

is normally included in free wake analyses. It is concluded that free wake

flows involving close interactions between filaments should account for the

curvature of nearby filaments to guarantee a consistent level of accuracy.
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It was found that the velocity errors associated with the BCVEwere

typically two orders of magnitude smaller than those for straight-line

elements. For this reason, it is possible to accurately represent a vortex

filament with fewer, larger curved elements than stralght-line elements. It

is important to be able to make this trade-off to offset the increased

complexity of the curved element method. In fact, because computer time

depends strongly on the numberof elements_ numerical simulations show that a
given level of accuracy can be achieved more efficiently with curved vortex
elements.

The curved vortex element method was implemented into a forward flight

free wake computer program. A special feature of this program is an adaptive
far wake model that utilizes free wake information to extend the vortex

filaments beyond the free wake region. This far wake model is based on an

approximate method to sum semi-infinite rows of elements in an efficient

manner. The curved element free wake, coupled with this far wake model,

exhibited rapid convergence, even in regions where the free wake and far wake
turns are interlaced.

Sample calculations of tip vortex motion for single and multl-bladed

rotors were presented at various advance ratios. The highly distorted wake

shapes share a number of commonstructural features. The strong tendency of

filaments along the sides of the wake to "roll-up" while the center portions

of the wake are convected downwardis clearly evident. Crossflow plots reveal

that the downstream wake flow resembles a trailing vortex pair, consistent
with experimental observations. A preliminary study has shown that the

downwashfield at the rotor is relatively insensitive to element size, even

whenvery large elements were used.

To further demonstrate the use of curved elements, the free wake program

was successfully adapted for use with the Boeing Vertol B-65 rotor alrloads

program, which previously used a prescribed wake representation of the tip

vortex. Sample calculations were performed for a four blade rotor with
different size vortex elements.
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Future work on the curved element method should focus on a full

realization of its potential advantages. The accuracy and flexibility of the

method pose new opportunities for the more realistic representation of rotor
wake flows.
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APPENDIX A

The BCVE requires the evaluation of integrals of the form

I
n n

Xl

[CX21 + bx I + a]3/2 dxl

(A-:)

Let R I E cx_ + bx I + a and A E 4ac-b 2 . Then

n = 0,1,2,3 these integrals are found to be (Ref 28)

for the values

O

2(2cx I + b)
(A-2)

2(2a + bx I)
(A-3)

(A - b2)x I - 2ab 1 fdXl

12 = - cA/_ 1 + c j/_1

(A-4)

cAx21 + b(10ac- 3b2)x I + a(8ac- 3b 2) 3b fdXl

14 = c2A R_ 1 2c 2j R_ 1

(A-5)

where

A-I

I__ In(2 c¢_i + 2CXl + b)
¢c

c>0

-I 2CXl + b
-- arcsin c < 0 , A < 0

rrE

(A-6)



It is clear from the form of these integrals that difficulties in

numerical evaluation will be encountered when c - 0 and/or A = 0 • These

E2 4
difficulties are a consequence of removing the term x I from the

denominator of the integrand and thereby reducing its order. This problem

occurs outside the region where the subinternal integration using the
4

quadratic model of _x I is applied. It can be shown analytically that

these integrals still exist at c = 0 and A = 0 as long as the limits of

integration are applied. However, from a numerical standpoint, near c = 0

and A = 0 the net result is obtained as the difference between two large

numbers. The programming for the element model includes a special treatment

to avoid this difficulty. The correction procedure is based in part on the

fact that the integrals, and in particular c and A , are known only to a

certain level of accuracy because of the neglect of the x I term (which

is the source of the problem anyway). Small quantities of order _ 44 are

selectively introduced into c and A to prevent their vanishing. Careful

testing has shown that this correction procedure yields smooth, well behaved

results.
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